30 秒定时器电路实现 摘要

随着时代的进步,电子行业技术的不断发展,定时器的应用也越来越发广泛。但传统的定时器都是发条驱动方式、电机转动式或电钟式等机械定时器。电子定时器相对传统定时器来说,体积小、重量轻、造价轻、精度高、寿命长、而且安全可靠、调整方便,适于频繁使用。满足对电器的电源进行控制,同时要方便用户对电子定时器的操作,具有广阔的应用前景,并开始得到广泛应用。

本论文详细介绍了定时器的发展前景、基本原理,并从实际出发,进行计数器、译码器和主芯片的选型,设计出一种基于 555 定时器的 30 秒定时器,最大时间能达到 30S。本论文还介绍了 555 定时器的结构特征、控制方法,以及定时的过程,秒脉冲发生器、时序控制电路、74HC192为计数器、LED七段数码管为数码显示器和译码显示电路构成的 30 秒定时器的电路组成、工作原理作了详细介绍。

关键词:555 定时器;时序控制电路;74HC192;译码显示电路

目录

第一章 前言
第二章 定时器的系统设计方案
第三章 定时器
3.1 555 定时器概述
3.2 555 内部电路结构
3.2.1 电阻分压器
3.2.2 电压比较器
3.2.3 基本 RS触发器
3.2.4 放电管和输出缓冲器
3.3 555 定时器的基本逻辑功能
3.4 555 定时器的应用举例
3.4.1 构成施密特触发器
3.4.2 构成单稳态触发器
3.4.3 构成多谐触发器
第四章 模块电路设计10
4.1 秒脉冲电路
4.2 减计数电路1
4.3 译码和数码显示电路12
4.3.1 译码器
4.3.2 数字显示译码器12
4.4 时序控制电路1

	4.4.1 时序逻辑电路概述]	14
	4.4.2 时序控制电路]	14
4.	5 整机框图电路]	l 5
第五章	至 系统调试]	16
5.	1 系统调试要点]	16
5. 2	2 系统调试结果]	16
第六章	世能测试与分析]	17
第七章	5 结论	18
谢辞.		18
参考文	t 南t	19

第一章 前言

随着我国科学技术的不断发展和完善,以及教育体系的不断更新,社会用人单位对高校人才培养模式提出了更高的要求。复合型、创新型、实用型人才日益受到用人单位的青睐。科学实验是近代科学发展的一个重要手段。电子课程设计是电子技术学习中非常重要的一个环节,是将理论知识和实践能力相统一的一个环节,是真正锻炼学生能力的一个环节。在许多领域中计时器均得到了普遍的应用,诸如在体育比赛、定时报警器、及家用电器的计时功能、交通信号灯等等,由此可见定时器在现代社会中的重要性。

第二章 定时器的系统设计方案

30 秒定时器的原理框图如图 2-1:

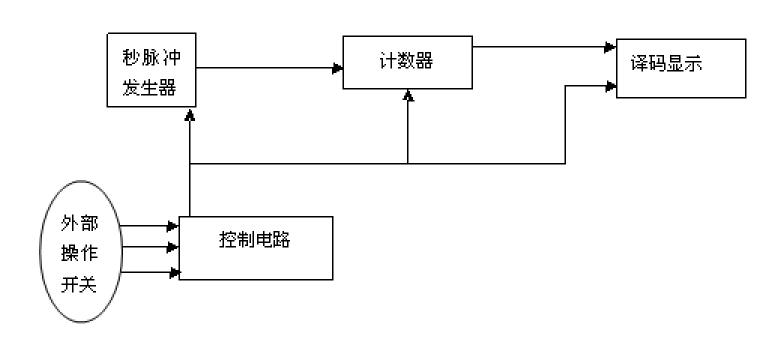


图 2-1 30 秒定时器原理框图

30 秒定时器主要由秒脉冲发生器、控制电路、计数器、译码显示器电路四部分组成。技术器完成 30 秒减计时功能,而控制电路是直接控制计数器的清零、启动计数、暂停/连续计数、译码显示等功能。操作直接清零开关时能够时计数器清零并且使数码显示器显示 00,当启动开关闭合时,控制电路应封锁时钟信号 CP (脉冲信号),同时计数器完成计数功能,译码显示电路显示 30 秒;当启动开关断开时,计数器开始计数:当暂停/连续开关闭合时,控制电路封锁时钟信号 CP,计数器处于封锁状态,计数器停止计数;当暂停/连续断开时,计数器连续累计计数。

第三章 定时器

定时器电路在数字电路中有着广泛的应用,既可以用于脉冲的产生,也可以用于电路的控制与检测。

集成定时器的典型代表是555定时器,它将模拟电路和数字电路集成与一体,可以方便的构成施密特触发器,单稳态触发器和多谐振荡器,并且带负载能力较强。

3.1 555 定时器概述

555 定时器是一种电路结构简单、使用方便灵活、用途广泛的多功能电路。只要外部配接少数几个阻容元件便可组成施密特触发器、单稳态触发器、多谐振荡器等电路。国内外生产的555 定时器有双极型产品,也有 CMOS 产品。一般用双极性工艺制作的称为555,用 CMOS 工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。555 定时器的电源电压范围宽,双极性555 定时器为5V~16V,CMOS555 定时器为3~18V,输出驱动电流约为200mA,因而其可以提供与TTL及CMOS数字电路兼容的接口电平。555 定时器还可输出一定的功率,可驱动微电机、指示灯、扬声器等。它在脉冲波形的产生与变换、仪器与仪表、测量与控制、家用电器与电子玩具等领域都有着广泛的应用。

555 定时器可以分为两类:

双极型定时器: 例如 5G1555;

CMOS 定时器: 例如 CH7555。

二者结构和功能相同,双极型定时器负载电流较大,而 CMOS 定时器功耗较低。

555 定时器的特点:

555 定时器成本低,性能可靠,计时精确度高。

只需要外接几个电阻, 电容, 就可以实现多谐振荡器, 单稳态触发器和施密特触发器等脉冲产生和变换电路。

其输出端的供给电流大,可直接推动多种自动控制的负载。

555 定时器引脚介绍:

555 集成电路是 8 脚封装, 双列直插型, 其引脚排列如图 3-1 所示:

1脚(GND):地;

- 2 脚(\overline{TR}):触发输入端,触发 2 脚和 6 脚是互补的, 2 脚只对低电平起作用,高电平对它不起作用,即电压小于 1Vcc/3,此时 3 脚输出高电平;
- 3 脚(OUT):输出端,它有 0 和 1 两种状态,由输入端所加的电平决定;它在高电位接近电源电压 Vcc,输出电流最大可达 200mA;
- 4 脚 ($\overline{R_D}$):复位端,加上低电平时可使输出为低电平,当 4 脚电位小于 0.4V 时,不管 2、6 脚状态如何,输出端 3 脚都输出低电平;
 - 5 脚(CO):控制电压端;可用它改变上下触发电平值;
- 6 脚 (TH):门限(阈值)端,只对高电平起作用,低电平对它不起作用,即输入电压大于2/3Vcc,称高触发端;
- 7 脚 (DIS):称放电端,它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;它与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高;
 - 8脚(Vcc): 是集成电路工作电压输入端, 电压为5~18V, 以 Vcc表示。

图 3-1 555 定时器引脚排列图

3.2 555 内部电路结构

555的内部结构可等效成23个晶体三极管,17个电阻,两个二极管,组成了比较器、RS触发器等多组单元电路,特别是由三只精度较高5k电阻构成了一个电阻分压器,为上、下比较器提供基准电压,所以称之为555。图3-2所示为双极型5G555定时器的逻辑图,内部包括电阻分压器、两个电压比较器C1和C2、与非门G1和G2组成的基本RS触发器、一个放电管VT和输出缓冲级G3等五部分组成。图中TH为电压比较器C1的阈值输入端,

TR 为电压比较器 C2 的触发输入端, CO 为控制端, $\overline{R_D}$ 为直接置 0 端, DIS 为放电端, OUT 为输出端。各部分的作用如下:

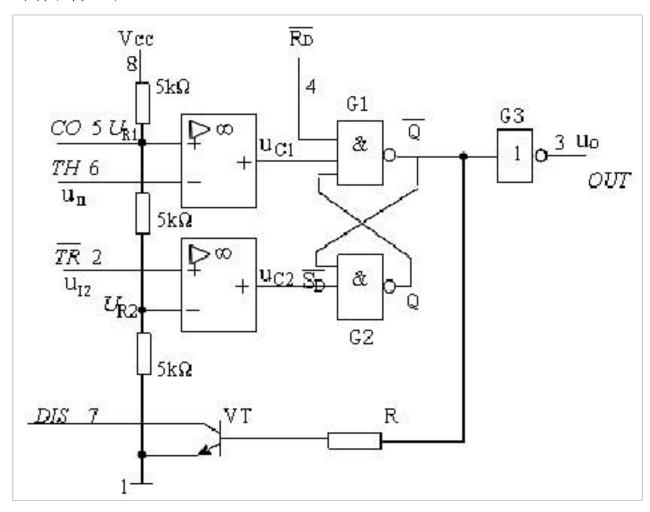


图 3-2555 定时器逻辑图

3.2.1电阻分压器

它由三个电阻均为 5k Ω 的电阻串联而成,分别为电压比较器 C1 和 C2 提供基准电压。

其中 UR1=2/3VCC 为 C1 同相输入端的基准电压; UR2=1/3VCC 为 C2 反相输入端的基准电压。如在控制端 CO 加固定电压 Uco 时,则 UR1=Uco, UR2=1/2Uco。如 CO 端不用时,为防止高频干扰,通常在 CO 端对地接一个 0.01uF 的电容。

3.2.2电压比较器

C1 和 C2 两个电压比较器由运算放大器组成,同相端和反相端的电压分别用 U+和 U-表示。当 U+>U-时,电压比较器输出高电平1;当 U+<U-时,电压比较器输出低电平0。

3.2.3基本 RS 触发器

基本 RS 触发器由 G1 和 G2 两个与非门组成,它的输入信号分别为 C1 和 C2 的输出电压 uc1 和 uc2,输入端分别为 $\overline{S_D}$ 、 $\overline{R_D}$,Q 和 \overline{Q} 为两个输出端,正常工作时,Q 和 \overline{Q} 必须互补,即互为反相 [2]。其逻辑功能如下:

- (1) 当 $\overline{R_D}$ =0, $\overline{S_D}$ =1 时,触发器置 0。因 $\overline{R_D}$ =0, G1 输出 Q=1, 这时 G2 输入都为高电平 1,输出 Q=0,触发器被置 0。使触发器处于 0 状态的输入端 $\overline{R_D}$ 称为置 0 端,也称为复位端,低电平有效。
- (2) 当 $\overline{R_D}$ =1、 $\overline{S_D}$ =0 时,触发器置 1。因 $\overline{S_D}$ =0,G2 输出 Q=1,这时 G1 输入都为高电平 1,输出 \overline{Q} =0,触发器被置 1。使触发器处于 1 状态的输入端 $\overline{S_D}$ 称为置 1 端,也称置位端,也是低电平有效。
- (3) 当 $\overline{R_D}$ =1、 $\overline{S_D}$ =1 时,触发器保持原状态不变。如触发器处于 Q=0、 \overline{Q} =1 的状态时,则 Q=0 反馈到 G1 的输入端,G1 因输入有低电平 0,输出 \overline{Q} =1; \overline{Q} 又反馈到 G2 的输入端,G2 输入都为高电平 1,输出 Q=0。电路保持 0 状态不变。

如触发器原处于Q=1、 $\overline{Q}=0$ 的 1 状态时,则电路同样能保持 1 状态不变。

 $\overline{R_D}$ 为外部信号直接置 0 端。当 $\overline{R_D}$ =0 时,基本 RS 触发器置 0,这时 Q=0, \overline{Q} =1,输出 uo=0.工作时, $\overline{R_D}$ 接高电平。

3.2. 城电管和输出缓冲器

三极管 VT 是作为开关管来使用的,其工作状态受基本 RS 触发器输出 Q端的信号控制。当 \overline{Q} 为低电平 0 时,VT 截止;当 \overline{Q} 为高电平 1 时,VT 导通。

G3 为输出缓冲器,用以提高 555 定时器的负载能力和隔离外界负载对定时器工作的影响。

3.3 555定时器的基本逻辑功能

根据图 3-1 所示电路分析 5G555 定时器的逻辑功能。设 TH 和 \overline{TR} 端的输入电压分别

为 uI1 和 uI2, 5G555 定时器的工作情况如下:

当 uI1>2/3Vcc、uI2>1/3Vcc 时,电压比较器 C1 和 C2 的输出 uc1=0,uc2=1,基本 RS 触发器被置 0,Q=0, \overline{Q} =1,输出 uo=0,同时 VT 导通。

当 uI1 < 2/3 Vcc、uI2 < 1/3 Vcc 时,电压比较器输出 uc1=1,uc2=0,基本 RS 触发器置 1,Q=1、 \overline{Q} =0,输出 uo=1,同时 VT 截止。

当 uI1 < 2/3Vcc、uI2 > 1/3Vcc 时,两个电压比较器的输出 uc1=1,uc2=1,基本 RS 触发器保持原状态不变,输出 uo 和 VT 的状态不变,即电路保持原状态不变。

综上所述, 555 定时器的功能表如表 3-1 所示。

输出 输入 \overline{R}_{D} VT 管状态 uI1 uI2 uo 导通 X \times 0 0 导通 > 1/3 Vcc>2/3Vcc 0 1 < 2/3 Vcc< 1/3 Vcc截止 1 1 不变 不变 < 2/3 Vcc> 1/3 Vcc1

表 3-1 5G555 定时器的功能表

3.4 555 定时器的应用举例

3.4.1构成施密特触发器

将 555 定时器的高触发端 TH (6 脚)和低触发端 \overline{TR} (2 脚)连接起来作为外加触发信号输入端ui,并从 OUT 端去输出 uo,就可以构成施密特触发器,如图 3-3 所示。设输入端为三角波,则各处波形如图 3-4 所示。

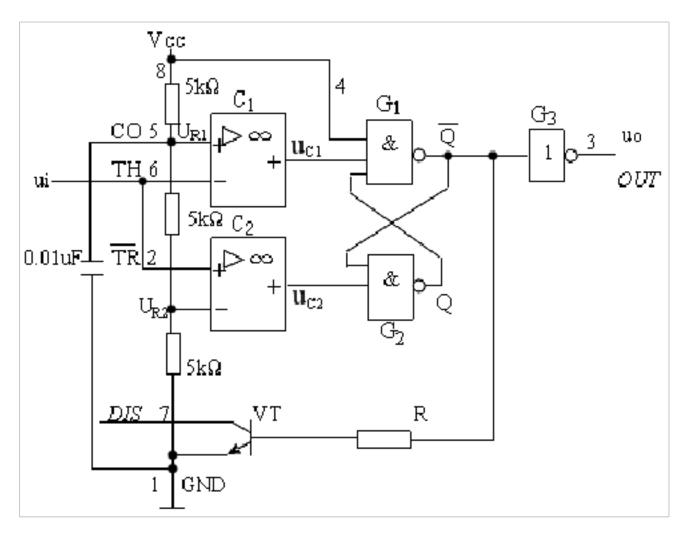


图 3-3 用 555 定时器构成的施密特触发器

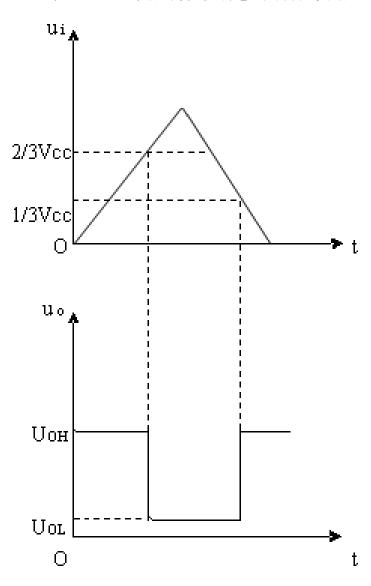


图 3-4 施密特触发器的工作波形

工作原理

参照图 3-4 所示的波形讨论施密特触发器的工作原理。

接通电源后,当 ui <1/3Vcc 时,即 TH \overline{TR} 端电压小于1/3Vcc,此时图3-3 电路中的 C1 输出低电平,C2 输出高电平, \overline{Q} 为低电平,VT 管断开,施密特触发器输出端 uo 为

高电平。如果 ui 上升且 ui < 2/3 Vcc 时,输出将维持原状态不变,设此时为电路的第一稳态。

当 ui>2/3Vcc 时,C1 输出高电平,C2 输出低电平,使 Q 为高电平,VT 管导通,触发器置 0,输出 uo 为低电平,电路状态翻转。可见,该施密特触发器的正向阈值电压为2/3Vcc。

当 ui 由高电平(大于 2/3Vcc)逐渐下降,只要 1/3Vcc < ui < 2/3Vcc,电路仍处于维持不变的状态,输出 uo 仍为低电平,此时为电路的第二稳态。

当 ui 下降到 ui≤1/3Vcc 时,电路又返回第一稳态。可见,该电路的负向阈值电压为1/3Vcc。输出 uo 的电压波形如图 3-4所示。

回差电压

电路的回差电压 ΔUTH=2/3Vcc-1/3Vcc=1/3Vcc。

如果在电路电压控制端 CO 上加电压 Uco, 可以改变比较器 C1、C2 的参考电压,以调节回差电压的大小。

3.4.2构成单稳态触发器

电路结构

将 555 定时器的 \overline{TR} 作为触发信号ui 的输入端,VT管的集电极通过电阻R接 Vcc,组成了一个反相器,其输出通过电容 C 接地,便组成了图 3—5 所示的单稳态触发器。 R和 C 为定时元件。

工作原理

下面参照图 3-6 所示波形讨论单稳态触发器的工作原理。

1、稳定状态

没有加触发信号时, ui 为高电平 U_{IH} 。

接通电源后,Vcc 经电阻 R 对电容 C 进行充电,当电容 C 上的电压 uc \geq 2/3 Vcc 时,电压比较器 C1 输出 uc1=0,而在此时,ui 为高电平,且 ui \geq 1/3 Vcc,电压比较器 C2 输出 uc2=1,基本 RS 触发器置 0,Q=0, \overline{Q} =1,输出 uo=0。与此同时,三极管 VT 导通,电容 C 经 VT 迅速放完电,uc \approx 0,电压比较器 C1 输出 uc1=1,这时基本 RS 触发器的两个输入信号都为高电平 1,保持 0 状态不变。所以,在稳定状态时,uc \approx 0,uo=0。

2、触发进入暂稳态

当输入 ui 由高电平 U_{IH} 跃到小于 1/3Vcc 的低电平时,电压比较器 C2 输出 uc2=0,由于此时 uc \approx 0,因此,uc1=1,基本 RS 触发被置 1,Q=1, $\overline{Q}=0$,输出 uo 由低电平跃到高电平 U_{OH} 。同时三极管 VT 截止,这时,电源 Vcc 经 R 对 C 充电,电路进入暂稳态。在暂稳态期内输入电压 ui 回到高电平 U_{IH} 。

自动返回稳定状态

随着 C 的充电, 电容 C 上的电压 uc 逐渐增大。当 uc 上升到 uc≥2/3Vcc 时, 比较器 C1 的输出 uc1=0, 由于这时 ui 已为高电平, 电压比较器 C2 输出 uc2=1, 使基本 RS 触发

器置 0, Q=0, $\overline{Q}=1$, 输出 uo 由高电平 U_{OH} 跃到低电平 U_{OL} 。同时,三极管 VT 导通,C 经 VT 迅速放完电, $uc\approx0$ 。电路返回稳定状态[3]。

单稳态触发器输出的脉冲宽度 tw 为暂稳态维持的时间,它实际上为电容 C 上的电压由 $uc \approx 0V$ 充到 2/3Vcc 所需的时间,可用下式估算:

$$tw = RC \ln 3 \approx 1.1RC \tag{3.1}$$

式中R、C为外接电阻和电容。

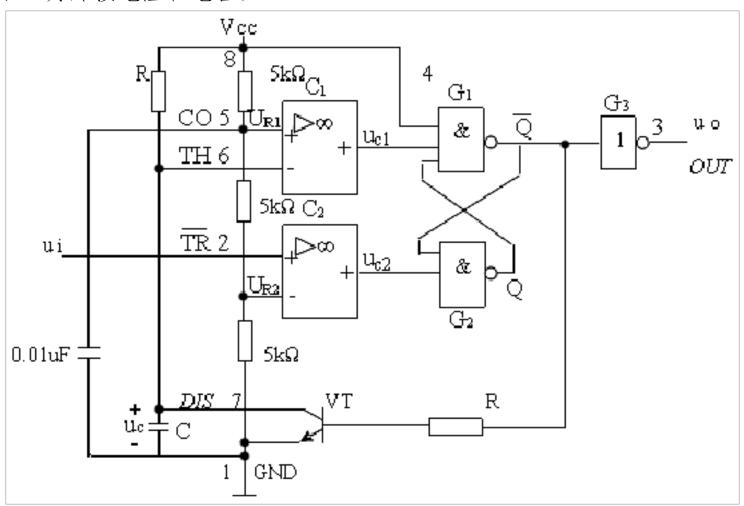


图 3-5 用 555 定时器组成的单稳态触发器

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/79613213513
1010220