一、选择题

1. 对大于 1 的自然数m 的三次幂可用奇数进行以下形式的"分裂":仿此,若m3 的"分裂 数"中有一个是 2017,则 m 的值为 ()

$$2^{3} \begin{cases} 3 \\ 5 \end{cases}, 3^{3} \begin{cases} 7 \\ 9 \\ 11 \end{cases}, 4^{3} \begin{cases} 13 \\ 15 \\ 17 \end{cases}$$

- A. 44
- ···B. 45
- c. 46

2. 数列
$$\{a_n\}$$
中, $a_1 = \frac{1}{2}$, $a_{m+n} = a_m a_n (\forall m, n \in \mathbb{N}^*)$,则 $a_6 = ($)

- A. $\frac{1}{16}$ B. $\frac{1}{32}$ C. $\frac{1}{64}$ D. $\frac{1}{128}$

3. 设等差数列 $\{a_n^{}\}$ 的前 n 项和为 $S_n, n \in \mathbb{N}^*$. 若 $S_{12} > 0, S_{13} < 0$,则数列 $\{a_n^{}\}$ 的最小项 是()

- A. 第6项

- B. 第 7 项 C. 第 12 项 D. 第 13 项

4. 朱载堉(1536-1611),明太祖九世孙,音乐家,数学家,天文历算家,在他多达百万字 著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子,他对文乙 的最大贡献是他创建了"十二平均律",此理论被广泛应用在世界各国的键盘乐器上,包善 钢琴, 故朱载堉被誉为"钢琴理论的鼻担":"十二平均律 " 是指一个八度有 13 个音, 相邻两 个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第三个音频率

为 f_3 , 第九个音频率 f_9 , 则 $\frac{f_9}{f_2}$ 等于()

- B. $\sqrt{2}$ C. $\sqrt{2}$ D. $\sqrt{2}$

5. 定义: 在数列 $\{a_n\}$ 中,若满足 $\frac{a_{n+2}}{a} - \frac{a_{n+1}}{a} = d \ (n \in N_+, \ d \ \text{为常数})$,称 $\{a_n\}$ 为"等

差比数列"。已知在"等差比数列" $\{a_n\}$ 中, $a_1 = a_2 = 1, a_3 = 3$ 则 $\frac{a}{a}$ = ()

A. $4 \times 2015^2 - 1$

B. $4 \times 2014^2 - 1$

c. $4 \times 2013^2 - 1$

D. 4×2013^2

6. 已知数列 $\{a_n\}$ 满足: $a_1 = 1$, $a_{n+1} = \frac{a}{a+2} (n \in N^*)$. 则 $a_{10} = ($)

- A. $\frac{1}{1021}$
- B. $\frac{1}{1022}$ C. $\frac{1}{1023}$
- D. $\frac{1}{1024}$

7. 已知数列 $\{a_n^{}\}$ 的前n项和是 $S_n^{}$, 前n项的积是 $T_n^{}$.

①若 $\{a_n\}$ 是等差数列,则 $\{a_n + a_{n+1}\}$ 是等差数列;

②若 $\{a_{n}\}$ 是等比数列,则 $\{a_{n}+a_{n}\}$ 是等比数列; ③若 $\left\{\frac{S}{n}\right\}$ 是等差数列,则 $\left\{a_{n}\right\}$ 是等差数列; ④若 $\{a_n\}$ 是等比数列,则 $\{(T_n)_n^2\}$ 是等比数列. 其中正确命题的个数有() C. 3 个 D. 4 个 A. 1 个 B. 2 个 8. 数列 $\{a_n\}$ 是等比数列,若 $a_2=1$, $a_5=\frac{1}{8}$,则 $a_1a_2+a_2a_3+\cdots+a_na_{n-n+1}$ 的取值范围是 A. $\left(-\infty, \frac{8}{3}\right)$ B. $\left(\frac{2}{3}, 2\right]$ C. $\left[1, \frac{8}{3}\right)$... D. $\left[2, \frac{8}{3}\right]$ 9. 已知数列 $\{a_n^{}\}$ 是1为首项,2为公差的等差数列, $\{b_n^{}\}$ 是1为首项,2为公比的等比数 列,设 $c_n = a_b$, $T_n = c_1 + c_2 + c_n$, $(n \in N^*)$, 则当 $T_n < 2020$ 时, n的最大值为 B. 10 ... C. 11 10. 删去正整数 1, 2, 3, 4, 5, ...中的所有完全平方数与立方数(如 4, 8),得到一个 新数列,则这个数列的第 2020 项是() C. 2074 B. 2073 A. 2072 11. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公 式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数 之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为"垛积术".现 有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为 () A. 174 C. 188 B. 184 12. 等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $S_6:S_3=3:1$,则 $S_9:S_3=($) A. 4:1 B. 6:1 c. 7:1 二、填空题 13. 数列 $\{a_n\}$ 的前 n 项和是 $S_n, a_1 = 1, a_n \neq 0, 3S_n = a_n a_{n+1} + 1$,若 $a_k = 2020$,则 14. 数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_1 = 2$, $S_n = \left(1 - \frac{1}{2^n}\right)a_{n+1}$, $b_n = \log_2 a_n$, 则数列

 $\left\{\frac{1}{b \cdot b}\right\}$ 的前n 项和 $T_n =$ _____.

15. 已知正项等比数列 $\{a_n\}$ 满足: $a_7 = a_6 + 2a_5$,若存在两项 $a_m : a_n$ 使得 $\sqrt{a_m a_n} = 4a_1$,则

 $\frac{1}{n} + \frac{4}{n}$ 的最小值为_____.

- **16.** 一个等差数列的前 **12** 项和为 **354**,前 **12** 项中偶数项和与奇数项和之比为 **32**: **27**,则 公差 **d** 为_____.
- 17. 根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式

 $a_n = \underline{\hspace{1cm}}$

- **18**. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_1 = 1$, $S_n = 2a_{n+1}$, 则 $S_n = _____$.
- 19. 正项数列 $\{a_n^2\}$ 满足 $2a_n^2 = a_{n-1}^2 + a_{n+1}^2$,若 $a_n^2 = 1$, $a_n^2 = 2$,则数列 $\{a_n^2\}$ 的通项公式为

20. 给出下列命题:① y = 1 是幂函数;② 函数 $f(x) = 2x - \log_2 x$ 的零点有且只有 1 个;

③ $\sqrt{x-1}(x-2) \ge 0$ 的解集为 $[2,+\infty)$, ④"x<1"是"x<2"的充分非必要条件,⑤ 数列 $\left\{a_n^{}\right\}$ 的前n项和为 S_n ,且 $S_n = a_n - 1$ ($a \in R$),则 $\left\{a_n^{}\right\}$ 为等差或等比数列,其中真命题的序号是______.

三、解答题

- **21.** 设数列 $\{a_n\}$ 前 n 项和为 S_n ,满足 $a_n = \frac{3}{4}S_n + \frac{1}{2}(n \in N^*)$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 令 $b_n = na_n$, 求数列 $\{b_n\}$ 的前n项和 T_n .
- 22. 设各项均为正数的数列 $\{a_n^{}\}$ 的前 n 项和为 $S_n^{}$,满足对任意 $n \in \mathbb{N}^*$,都有

 $a_1^3 + a_2^3 + a_3^3 + a_3^3 = S_2^3$.

- (1) 求证:数列 {a } 为等差数列;
- (2) 若 b_n := $(-1)^n (2a_n)^2$, 求数列 $\{b_n\}$ 的前n项和 T_n .
- 23. 已知公差为整数的等差数列 $\{a_n\}$ 满足 $a_2a_3=15$,且 $a_4=7$.
- (1) 求数列 $\{a_n\}$ 的通项公式 a_n ;
- (2) 求数列 $\{a_n \cdot 3n\}$ 的前n 项和 S_n .
- 24. 已知数列 $\{a_n\}$ 的前n项和为 S_n , 当n 2, $n \in N*$ 时, $S_{n-1} = 1-2a_n$, 且 $a_1 = \frac{1}{2}$.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = na_n$, 数列 $\{b_n\}$ 的前n项和 T_n , 求使得 $T_n < \frac{15}{8}$ 成立的n的最大值.
- 25. 已知数列 $\{a_n\}$ 是各项均为正数的等比数列,数列 $\{b_n\}$ 为等差数列,且 $b_1 = a_1 = 1$, $b_3 = a_3 + 1$, $b_5 = a_5 7$.
- (1) 求数列 $\{a_n\}$ 与 $\{b_n\}$ 的通项公式;
- (2) 设 S_n 为数列 $\left\{a_2\right\}$ 的前n项和,若对于任意 $n \in N^*$,有 $S_n + \frac{1}{3} = t \cdot 2b_n$,求实数t的值;
- (3) 记 $c_n = \frac{b}{b \cdot b \cdot a}$, 数列 $\{c_n\}$ 的前n项和 A_n , 求证: $A_n < \frac{1}{2}$.
- 26. 已知数列 $\{a_n^*\}$ 的前 n 项和为 S_n , 点 (a_n, s_n^*) 在直线 y = 2x 2, 上 $n \in \mathbb{N}^*$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = n + a_n$, 求数列 $\{b_n\}$ 的前n项和 T_n .

【参考答案】***试卷处理标记,请不要删除

一、选择题

1. B

解析: B

【分析】

由题意,从 23 到 m3 ,正好用去从 3 开始的连续奇数,共 $2+3+ + m = \frac{1}{2}(m+2)(m-1)$ 个,再由 2017 是从 3 开始的第1008 个奇数,可得选项。

【详解】

由题意,从 23 到 m3 ,正好用去从 3 开始的连续奇数,共 $2+3+ + m = \frac{1}{2}(m+2)(m-1)$ 个, 2n+1=2017 ,得 n=1008 ,

所以2017是从3开始的第1008个奇数,

当m = 45时,从23到453,用去从3开始的连续奇数共 $\frac{47 \times 44}{2} = 1034$ 个,

当m = 44时,从23到443,用去从3开始的连续奇数共 $\frac{46 \times 43}{2} = 989$ 个,

所以m=45,

故选: B.

【点睛】

方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.

2. C

解析: C

【分析】

由 m,n 的任意性,令 m=1,可得 $a_{n+1}=\frac{1}{2}a_n$,即数列 $\{a_n\}$ 是首项为 $\frac{1}{2}$,公比为 $\frac{1}{2}$ 得等比数列,即可求出答案.

【详解】

由于
$$\forall m, n \in \mathbb{N}^*$$
 , 有 $a_{m+n} = a_m a_n$, 且 $a_1 = \frac{1}{2}$

令
$$m=1$$
,则 $a_{n+1}=a_1a_n=\frac{1}{2}a_n$,即数列 $\{a_n\}$ 是首项为 $\frac{1}{2}$,公比为 $\frac{1}{2}$ 得等比数列,

所以
$$a_n = a_1 q_{n-1} = \frac{1}{2} \times \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^n$$
,故 $a_6 = \left(\frac{1}{2}\right)^6 = \frac{1}{64}$

故选: C.

【点睛】

关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由 m,n 的任意性,令m=1,即可知数列 $\left\{a_{n}\right\}$ 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.

3. B

解析: B

【分析】

可利用等差数列的前 n 项和的性质,等差数列下标的性质进行判断即可

【详解】

由题意
$$S_{12} > 0$$
, $S_{13} < 0$ 及 $S_{12} = 6(a_1 + a_{12}) = 6(a_6 + a_7)$, $S_{13} = \frac{13}{2}(a_1 + a_{13}) = 13a_7$, 得

 $a_{_{6}}+a_{_{7}}>0, a_{_{7}}<0$,所以 $a_{_{6}}>0, a_{_{6}}>|a_{_{7}}|$,且公差d<0,所以 $|a_{_{7}}|$,最小.故选 B.

【点睛】

等差数列的前n项和 S_n 具有以下性质

$$S_{2n-1} = (2n-1)a_n, S_{2n} = n(a_n + a_{n+1}).$$

4. A

解析: A

【分析】

依题意 13 个音的频率成等比数列,记为 $\{a_n^{}\}$,设公比为 q,推导出 $q=2^{1\over 12}$,由此能求出

$$\frac{f_3}{f_3}$$
的值.

【详解】

依题意 13 个音的频率成等比数列,记为 $\{a_n^{}\}$,设公比为 q,

则
$$a_{13} = a_1 q_{12}$$
 ,且 $a_{13} = 2a_1$, $\therefore q = 2\frac{1}{12}$,

$$\therefore \frac{f_0}{f_3} = \frac{a_0}{a_1} = \frac{a_1 q_8}{a_1 q_2} = q_6 = \left(2^{\frac{1}{12}}\right)^6 = \sqrt{2}.$$

故选: A.

【点睛】

关键点点睛:本题考查等比数列的通项公式及性质,解题的关键是分析题意将 13 个音的频率构成等比数列,再利用等比数列的性质求解,考查学生的分析解题能力与转化思想及运算能力,属于基础题.

5. C

解析: C

【分析】

利用定义,可得 $\left\{\frac{a}{n+1}\right\}$ 是以 1 为首项,2 为公差的等差数列,从而 $\frac{a}{a}$ = 2n-1,利用

$$\frac{a}{a_{2015}} = \frac{a}{a_{2015}} \cdot \frac{a}{a_{2014}}$$
, 可得结论.

【详解】

$$a_1 = a_2 = 1$$
, $a_3 = 3$,

$$\therefore \frac{a}{a} - \frac{a}{a} = 2,$$

$$\therefore \left\{ \frac{a}{a} \right\}$$
是以 1 为首项,2 为公差的等差数列,

$$\therefore \frac{a}{a} = 2n - 1,$$

$$\therefore \frac{a}{a_{2015}} = \frac{a}{a_{2015}} \cdot \frac{a}{a_{2014}} = (2 \times 2014 - 1)(2 \times 2013 - 1) = 4027 \times 4025$$

$$= (4026 + 1)(4026 - 1) = 4026^2 - 1 = 4 \times 2013^2 - 1$$
.

故选: C.

【点睛】

数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,

或用累加法、累乘法、迭代法求通项.

6. C

解析: C

【分析】

根据数列的递推关系,利用取倒数法进行转化得 $\frac{1}{a_{n+1}} = \frac{2}{a_n} + 1$,构造 $\left\{\frac{1}{a_n} + 1\right\}$ 为等比数

列,求解出通项,进而求出 a_{10} .

【详解】

因为
$$a_{n+1} = \frac{a}{a+2}$$
,所以两边取倒数得 $\frac{1}{a} = \frac{a+2}{a} = \frac{2}{a} + 1$,则 $\frac{1}{a} + 1 = 2\left(\frac{1}{a} + 1\right)$,

所以数列
$$\left\{\frac{1}{a}+1\right\}$$
为等比数列,则 $\frac{1}{a}+1=\left(\frac{1}{a}+1\right)\cdot 2^{n-1}=2^n$,

所以
$$a_n = \frac{1}{2^{n}-1}$$
,故 $a_{10} = \frac{1}{2^{10}-1} = \frac{1}{1023}$.

故选: C

【点睛】

方法点睛: 对于形如 $a_{n+1} = pa_n + q(p \neq 1)$ 型,通常可构造等比数列 $\{a_n + x\}$ (其中 $x = \frac{q}{p-1}$) 来进行求解.

7. D

解析: D

【分析】

结合等比数列、等差数列的定义,对四个命题逐个分析,可选出答案.

【详解】

对于①,设等差数列 $\{a_n^{\prime}\}$ 的公差为d,则

$$(a_{n+1} + a_{n+2}) - (a_n + a_{n+1}) = (a_{n+1} - a_n) + (a_{n+2} - a_{n+1}) = 2d$$
 为定值,故 $\{a_n + a_{n+1}\}$ 是等差数列,即①正确;

对于②,设等比数列
$$\{a_n\}$$
的公比为 q ,则 $\frac{a_n+a_n}{a_n+a_{n+1}}=\frac{a_nq+a_nq}{a_n+a_{n+1}}=q$ 为定值,故 $\{a_n+a_n\}$ 是等比数列,即②正确;

对于③,等差数列
$$\left\{\frac{S}{n}\right\}$$
的首项为 $\frac{S}{1}=a_1$,设公差为 d ,则数列 $\left\{\frac{S}{n}\right\}$ 的通项公式为

$$\frac{S}{n} = a_1 + (n-1)d$$
, fix $S_n = na_1 + n(n-1)d$,

则 $n \ge 2$ 时,

$$a_n = S_n - S_{n-1} = na_1 + n(n-1)d - [(n-1)a_1 + (n-1)(n-2)d] = a_1 + 2(n-1)d$$
, 由 a_1 符合 $a_n = a_1 + 2(n-1)d$, 可知 $\{a_n\}$ 的通项公式为 $a_n = a_1 + 2(n-1)d$, 则 $a_n - a_{n-1} = a_1 + 2(n-1)d - [a_1 + 2(n-2)d] = 2d$ 为定值,即 $\{a_n\}$ 是等差数列,故③正确;

对于④,设等比数列 $\{a_n\}$ 的公比为q,则

$$T_{n} = a_{1} a_{2} a_{3} \quad a_{n} = a_{1} \left(a_{1} q \right) \left(a_{1} q^{2} \right) \quad \left(a_{1} q^{n-1} \right) = a_{1} q^{1+2+3+} + \left(n-1 \right) = a_{1} q^{\frac{n(n-1)}{2}}, \quad \text{fig.}$$

$$(T_n)_n^2 = \begin{bmatrix} a_n q & 2 \\ 1 & 2 \end{bmatrix}_n^2 = a_1^2 q^{n-1}, \dots$$

则
$$\frac{(T)_n^2}{(T)_{n-1}^2} = \frac{a^2 q^{n-1}}{a^2 q^{n-2}} = q$$
 为定值,即 $\left\{ (T)_n^2 \right\}$ 是等比数列,故④正确.

所以正确命题的个数有4个.

故选: D.

【点睛】

本题考查等比数列、等差数列的判定,考查学生的推理能力,属于中档题.

8. D

解析: D

【分析】

由题意计算出 $\{a_n^{}\}$ 的公比q,由等比数列的性质可得 $\{a_n^{}a_{n-n+1}^{}\}$ 也为等比数列,由等比数列前n项和计算即可得结果.

【详解】

因为数列
$$\{a_n\}$$
 是等比数列, $a_2=1$, $a_5=\frac{1}{8}$, 所以 $q^3=\frac{a_5}{a_2}=\frac{1}{8}$, 即 $q=\frac{1}{2}$, 所以 $a_1=2$,

由等比数列的性质知 $\left\{a_{n}a_{n+1}\right\}$ 是以 2 为首项,以 $\frac{1}{4}$ 为公比的等比数列.

所以
$$2 = a_{12} \le a_{12} + a_{23} + a_{n+1} = \frac{2\left(1 - \left(\frac{1}{4}\right)^n\right)}{1 - \frac{1}{4}} = \frac{8}{3} - \frac{8}{3}\left(\frac{1}{4}\right)^n < \frac{8}{3}$$

故选: D.

【点睛】

本题主要考查了等比数列的性质以及等比数列前 n 项和的计算,属于中档题.

9. A

解析: A

【分析】

根据题意计算 $a_n = 2n-1$, $b_n = 2^{n-1}$, $T_n = 2^{n+1} - n - 2$, 解不等式得到答案.

$$\{a^n\}$$
 是以 1 为首项, 2 为公差的等差数列, $: a_n = 2n-1$, $\{b^n\}$ 是以 1 为首项, 2 为公比的等比数列, $: b_n = 2^{n-1}$,

$$T_{n} = c_{1} + c_{2} + \dots + c_{n} = a_{b_{1}} + a_{b_{2}} + \dots + a_{b_{n}} = a_{1} + a_{2} + a_{3} + \dots + a_{2n-1}$$

$$= (2 \times 1 - 1) + (2 \times 2 - 1) + (2 \times 4 - 1) + \dots + (2 \times 2^{n-1} - 1) = 2 (1 + 2 + 4 + \dots + 2^{n-1}) - n$$

$$=2\times\frac{1-2^{n}}{1-2}-n=2^{n+1}-n-2,$$

$$T_n < 2020$$
, $2n+1-n-2 < 2020$, 解得 $n \le 9$,

则当 $T_n < 2020$ 时,n 的最大值是 9.

故选: A.

【点睛】

本题考查了等差数列,等比数列,分组求和法,意在考查学生对于数列公式方法的灵活运 用.

10. C

解析: C

【分析】

由于数列12,2,3,22,5,6,7,8,32,...452 共有2025 项,其中有45个平方数, 12个立方数, 有 3 个既是平方数,又是立方数的数,所以还剩余 2025 - 45 - 12+3 = 1971 项,所以去掉 平方数和立方数后,第2020 项是在2025 后的第(2020-1971=49)个数,从而求得结果.

【详解】

 $3.5 \pm 452 = 2025$, 462 = 2116, 2020 < 2025, 所以从数列12,2,3,22,5,6,7,8,32,...452中去掉45个平方数,

因为123 = 1728 < 2025 < 133 = 2197,所以从数列12,2,3,22,5,6,7,8,32,...452中去掉 12个立方数,

又 36 < 2025 < 46, 所以在从数列 12,2,3,22,5,6,7,8,32,...452 中有 3 个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数,

所以从数列12,2,3,22,5,6,7,8,32,...452 中去掉平方数和立方数后还有

2025-45-12+3=1971 项,此时距 2020 项还差 2020-1971=49 项,

所以这个数列的第 2020 项是 2025 + 49 = 2074,

故选: C.

【点睛】

本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要

弄明白在数列12,2,3,22,5,6,7,8,32,...452 去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.

11. A

解析: A

【分析】

根据已知条件求得 $a_n - a_{n-1} = n-1$,利用累加法求得 a_{19} .

【详解】

依题意:

3, 4, 6, 9, 13, 18, 24,

所以
$$a_n - a_{n-1} = n - 1$$
. $(n \ge 2)$,且 $a_1 = 3$,
所以 $a_n = (a_n - a_{n-1}) + (a_n - a_n) + (a_2 - a_1) + a_1$
 $= (n-1) + (n-2) + (n-2) + (n-1) + 3 = \frac{n(n-1)}{2} + 3$.

所以 $a_n = \frac{19 \times 18}{2} + 3 = 174$.

故选: A

【点睛】

本小题主要考查累加法,属于中档题.

12. C

解析: C

【分析】

利用等比数列前 n 项和的性质 S_k , $S_{2k} - S_k$, $S_{3k} - S_{2k}$, $S_{4k} - S_{3k}$, … 成等比数列求解.

【详解】

因为数列 $\{a_n\}$ 为等比数列,则 S_3 , S_6-S_3 , S_9-S_6 成等比数列,

设
$$S_3 = m$$
,则 $S_6 = 3m$,则 $S_6 - S_3 = 2m$,

故
$$\frac{S_6 - S_3}{S_3} = \frac{S_9 - S_6}{S_6 - S_3} = 2$$
,所以 $S_9 - S_6 = 4m$,得到 $S_9 = 7m$,所以 $\frac{S_9}{S_3} = 7$.

故选: C.

【点睛】

本题考查等比数列前 n 项和性质的运用,难度一般,利用性质结论计算即可.

二、填空题

13. 1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】

解: 当时当时由则两式相减得到因为故数列的奇数项为以为首项 3 为公差的等

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/81501011421 4011042