一、如何进入 Cadence

- 1、进入UNIX系统后,点击右键,在弹出菜单中点选tools—terminal,在 terminal 提示符后键入icfb,启动Cadence.如果在icfb后加&则那个 terminal 窗口还能干别的,要是不加就什么都不能干了,而且关掉terminal Cadence 也会关闭
- 2、在主窗口CIW里,点 file--new--libarary,新建一个库,然后可以在库里新建 cellview.viewname有schematic(原理图)layout(版图)symbol(符号)等,根据需要选择
- 3、如果要画版图,一定要选 compile a new tech file 或 attach to an existing tech file,如果选第一项,则在弹出窗口里输入要 compile 的 tf 文件的路径,如果选第二项,则选择一个已经存在的库,你新建的库就会 attach 到那个库,就是说两个库用一个工艺文件
- 4、将一个已有的库包含进来用libarary path manager,在 tools 菜单里,启动后,左边输入库名,右边输入库路径,再点file--save,就可以了,库路径信息保存在 cds. lib 文件中

二、绘制原理图

- 1、建好库后,新建 cellview 时选 schematic,进入原理图编辑窗口,然后就可以画电路图了,和其它画电路图的软件如 protel 大体上都是差不多的,都是加入原件后扯线就行了
- 2、发几个常用快捷键,用 Cadence 时,一定要熟练使用快捷键,可以给你的工作提供很大便利
- i—添加元件; (我一般都用 sample库的 mos 管, 二极管等, basic库的 VDD , GND)

p-加输入输出引脚

[——缩小两倍;

——扩大两倍;

w — 连线(细线);

f——全图显示;

q——查看元件属性。

u-撤消上一次操作

U--重做上一次操作

c-复制

m--移动

(在选复制移动后,点F3键,可出现设置对话框,可以设置复制几行几列,ratot 旋转)sideway左右镜像翻转)updown(上下镜像翻转))

X--检查并存盘

S--存盘

3、可以把画好的电路图封装成 symbol,以后就可以调用自己的原件了。方法是点 design--creat cellview--from ce再点 OKK, 就好了

三、绘制版图

- 1、在一个包含工艺文件的库里新建cell, cellview选 layout
- 2、常用快捷键
- r:画矩形(retangel)
- k:创建尺子
- shift+k:清除所有尺子
- m:移动(move)
- c:复制(copy)
- s:伸拉(strech)
- shift+m:两图形融合(merge)
- shift+c:切图形 (chop)
- u:取消上一次操作(undo)
- shift+u:重复上一次操作(redo)
- q:属性
- 1:标签(label)
- 另: 键入上述命令后按F3,可以出现高级选项对话框
- 3、了解了快捷键,现在开始画版图,首先,在左边的LSW窗口点击你所需要的层次,比如先选 oxide (或 active),再按 r,拖动鼠标,画出一个矩形,再按 k,标定好尺寸,再按 s,拖动矩形边调整到合适大小,这样有源区就画好了,同样方法再选 poly 层画栅,metall 画金属线,cont 层画接触孔,一个最简单的 mos 管就画成了

4、关于版图的层次

(1) 版图的层次由工艺文件定义,也可以自己添加或删除,在 CIW 窗口中,点 technology file—edit layers, 出现对话框, 有 add, edit, delete 等选项, 点 add 新加层次时,要注意 display resourse 一定要和其它层选的不一样,否则 这两个层显示的条纹色彩就一模一样。还有 stream data type number, stream

layer number等,与将来导出 GDS 文件有关,具体什么含义我也没弄太清楚。 修改结束后会提醒你工艺文件已修改,是否保存

(2) 关于各层显示:各个层次的显示由.drf 文件定义,可以在 LSW 窗口中,点 file--display resourse 进行修改,边框,条纹,颜色等等都可以修改,一切按自己习惯来,也可以在出现的对话框中,可以点 file--load 来载入已经存在的.drf 文件。修改后的显示信息也可以保存,以便下次直接调用

5、关于 LSW

middle: 使某一层不可见,要注意这层不能是选定用来绘图的那一层

shift+middle: 只有点的那一层可见,其余不可见,相当于 NV

right: 使某层不可选,某层处于不可选状态时,颜色会变淡些,在版图上你就无法选定由这层画出的图形

shift+right:只有点的那一层可选,其余不可选,相当于 NS

要解除不可见或不可选的状态,再点一下 middle 或 right 就可以了

四、hspice 仿真

- 1、将电路导成网表:将画好的电路图check and save后,在CIW窗口里,点file--stream out--CDL,在弹出窗口里点browser,选定要导出的电路图,设置好路径(路径如果不填就在启动Cadencer的目录下)和导出文件名(默认为netlist),点OK
- 2、找到你刚刚生成的网表,对其进行编辑,我一般是先把GLOBAL VDD GND 那一行前面的星号去掉,因为星号是代表注释掉某一行语句,而我们需要 VDD GND 做为全局变量。然后再把最下面main circuit 那一块里的 subckt 前加上星号, subckt 意思是定义子电路, 在main circuit 里无需定义子电路。
- 3、去掉最后的 end cellname,加激励:下面是我经常用的最简单的激励
- v0 VDD GND 6 * 定义电源和地之间的电压 6V*
- v1 IN1 0 pulse (0 5 5u 1n 1n 5u 10u) *输入信号 1 脉冲 低电平 0V 高电平 5V 延迟 5u 上升时间 1n 下降时间 1n 正半周时间 5u 周期 10u*
- .op *分析静态工作点 *
- .option list post nomode *控制输出的语句,一般不需管*
- . print *输出说明,还可写成 print v(节点名称) i(r1) p(r1) 分别代表输出电压电流和功率*
- .inc '/home/user1/n95.inc'*要用到的工艺制程*
- .tran 1u 300u *每 1u 分析一点,总共分析 300u*
- . end

- 4、在保存网表的路径下,打开终端,键入hspice netlist(或你的网表名),程序开始运行,等运行结后,键入awaves netlist.tr0,就可以看波形,想看哪个波形,在result browser里一双击就可以
- 5、改变横坐标: 在 result browser 窗口里, 选中你想要作为横坐标的变量, 再点 Apply 就可以了
- 6、如果电路是层次化的,想看某一模块里某一 cell 的电压或电流,在网表里写 blockname. cellname 就可以,比如看一个管的漏电流: print dc i (XI. mp24)。再在 results browser 窗口 hierarchy 栏双击 top,点选某一模块,就可以在 types 和 curves 里点击相应的项目查看波形
- 7、有时会提示"input file has no data"怎么办?明明网表在,激励在,怎么 no data 呢?其实也很简单,就是修改网表的时候,删最后那一行的"ends cellname"时,千万不要把那一行全部选删掉,就选那几个字删就好,否则就会 no data (

五、DRC 验证

- 1. 将版图导成 GDS 文件:在 CIW 窗口中点 file—stream out, 在弹出的对话框中点 browser 选定你要导的版图,设置好输出文件名(一般为 cellname. gds),路径等等点 OK
- 2、对 DRC 文件进行修改:在 INDISK 后,写入你的 GDS 文件路径及文件名,OUTDISK 后设置你的输出文件名,PRIMARY 后写你的 cellname, workdir 后写你的 DRACUAL 程序路径,改好后保存
- 3、将改好的 DRC 文件和 GDS 文件放在同一目录下,并在此终端下键入 PDRACULA,在提示符后输入":/g cellname.gds",程序开始运行,生成 jxrun.com 等可执行文件,程序运行完后输入 ":/f" 推出程序
- 4、输入 jxrun. com, 系统开始进行 DRC 验证, 生成一堆文件
- 5、点 file—Dracula interactive,菜单栏里出现新的菜单项,点击 DRC—setup,写入程序运行路径,点 OK,可以图形的方式查看错误(详见 VLSI 设计概论 DRACULA 一章)

六、LVS 验证

- 1、将版图转换成GDS文件:和前面讲DRC时一样,就是在CIW里点file--export--stream out,设置好文件名和路径,点OK
- 2、将电路图转换成网表: CIW 里, file--export--CDL, 设置文件名和路径, 点 OK
- 3、将 GDS 文件,网表和 LVS 文件都拷在同一个目录下
- 4、修改 LVS 文件: INDISK 后写你的 GDS 文件路径

OUTDISK 后写输出文件名

PRIMARY 后写你的 top cellname

program dir 后写 DRACULA 程序的路径

- 5、将 netlist 转换成 LVSLOGIC.DAT: 在验证目录路径下,键入大写 LOGLVS,然后在冒号后输入"cir 网表名"编译网表,"con 要转换的电路原理图的 top cell 名"将 top cell 转换成 XTR 文件,":SUMMARY"看电路图情况,包括各种器件个数,':x'退出
- 6、在同一路径下,键入 PDRACULA, 在提示符后输入"/g lvs 文件名", "/f" 退出, 生成 jxrun. com
- 7、输入 jxrun. com 则开始执行 LVS 检验, 若输入 jxrun. com>cellname. log,则检验在后台执行并将结果输出到 cellname. log 文件里
- 8、程序结束后,生成很多文件,可通过.1vs 文件来查看错误,也可通过 DRC 介绍的方式以图形化方法查看
- 9、LVS 注意事项
- (1)、确保所有的 LABEL 均被识别出来,尤其是 VDD 和 GND 的。LABEL 用哪一层金属都可以,只要将其原点包含到你要标识的那个金属条里就行

PAD之间不能短接

- 。我这次做 LVS 最开始 只认出了四个输入,四个输出及电源和地都没有被认出来,我百思不得其解, 后来上网请教,得知要查查 PAD 是否有相同的器件连接。我一查,果然,由于 我粗心,meta13 有部分重叠,几个 PAD 连成一片,能认出来才怪。断开重叠的 meta13,又发现多打了几个 via, 把电源和地打通了,除掉那几个害人的 via, 又发现两个输出的功率管的漏极接到一起了,就相当于一个管子接了两个 PAD, 肯定会出错
- (3)、报告结果的.1vs文件中,差异报告部分左边是原理图的器件,右边是版图的器件,我一般都是从不匹配的节点开始找。在LVS——setup后,将不匹配的 netname 写入 LVS view 窗口的第二栏里,再点 fit,不匹配的 net 就会高亮显示,再在原理图窗口用 edit—search,找到相应的 net,就可以比较两者,看哪儿出错了

第一章 启动 IC50

IC50是 Cadence 全定制 IC 设计工具包,其中包括原理图设计工具 Composer,版图设计工具 Virtuso 版图验证工具 Diva、Dracula等。这些工具集成在一个统一的设计环境中,称为 Design Frame II Cadence IC50是一种通用的设计工具,其使用方法很灵活,许多操作取决于用户的设置,这些设置文件存放在用户的工

作目录下,在启动时,系统自动寻找这些文件,因此在不同的目录下启动 IC50 时,操作方法可能有很大区别。

在ASIC EDA 课程中,我们主要使用由美国北卡罗来纳大学(NCSU)编写的操作环境,使用该环境时,你需要在/etc/bashr中设置环境变量CDS_SITE=/tools/cds5/本机安装时,该环境变量已设置,在不使用NCSU 环境时,应在该句前面加#使其不起作用,但不要删掉,这样在需要使用该环境变量时,只要去掉#,重新启动即可。

本机的 Cadence 工具软件使用 Linux Redhat7.2操作系统,所有 Linux Redhat7.2操作系统都安装在虚拟机下,首次使用 Linux Redhat7.2下的工具软件时需阅读本章的第 1、2 节。

1、启动虚拟机

- (1) 双击桌面上 Vmware Workstation图标。
- (2) 点击窗口中的"Start this virtual machine
- (3) 在弹出的对话框中,点"OK"。
- (4) 这时将出现 Linux RedHat7. 2的启动画面,用鼠标在 Linux 画面范围内 点击一下,则鼠标可控制 Linux,然后敲回车键启动 Linux。
- (5) 当 Linux 窗口内的信息不再变化时, 敲回车键, 应出现登陆信息(如 敲回车键无效, 先用鼠标在 Linux 窗口内点一下, 进入控制虚拟机状 态)。
- (6) 在 login 后面键入 root 然后回车
- (7) 在 Password: 后输入 123456 回车
- (8) 在出现[root xxn root 肺输入 startx回车
- (9) 这时将启动 Linux 的图形操作界面。
- (10) 同时按 "Ctrl"和 "Alt"键,将鼠标退出Linux(箭头变成白色),点击 "FullScreen",Linux操作画面变为全屏,以下进入正常的Linux操作方式。
- (11) 全屏后,同时按 "Ctrl"和 "Alt"键也可以回到 Windows。
- (12) 推出 Linux

点击图 1-1中左下角的"脚形"图标,在点"log out,然后选择"shut down"即可正常退出。

- 2、Linux基本操作
- 2. 1 操作界面

正常启动 Linux 后,将出现图 1-1 所示的操作界面:

图 1-1 Linux操作界面

图 1-1 中左下脚的"脚形"图标是用来选择系统中的应用程序的,退出 Linux 系统时也需要先点击该图标。

黑色的"电视"状图标是Linux的控制台,用来输入命令,Linux下的大多数程序需要用命令启动。

最右边的图标是一个"照相机",可以将当前屏幕画面拷贝到一个.png 文件中,传到Windows XP 系统中,可用附件中的画图工具打开。

"照相机"左边的图标是一个文本编辑器,可以用来观察和编辑任何可读的文件。

Linux 操作系统的基本思想是一切计算机资源,包括硬盘、光驱、显示器等硬件设备都理解为文件。在Linux下没有C盘、D盘的概念,所有文件都是按目录管理的。最高层的目录称为根目录,用"/"表示,其它任何软件或硬件都是在根目录下的某个子目录中。为便于管理,我们规定使用者必须将工作目录建在/usr下,并以自己名字的缩写命名,如/usr/xxn 任何自己编写的或机器生成的文件都应该存放在该目录下。

2. 2 建立工作目录

首先,需要找到/usr目录,在按本章第 1 节的方法进入 Linux 时,用户 当前目录是/root 可以双击屏幕左上方的 "roothome" 图标,再点击工具栏 中的"up",即可进入根目录,这时屏幕应如图 1-2所示,可窗口中找到"usr" 图标,双击该图标即可进入"/usr"下。

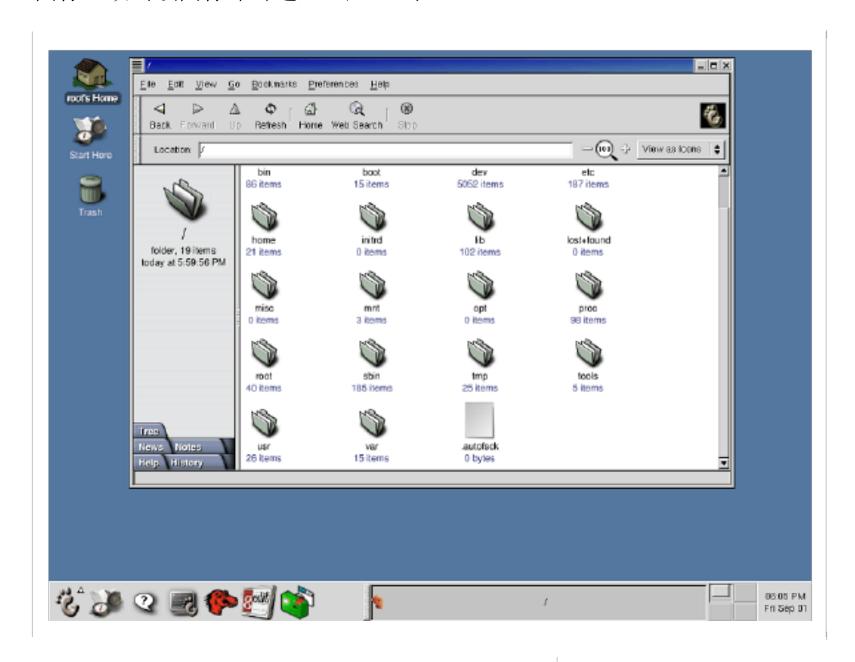


图 1-2 根目录下的子目录

在图形操作界面下,建立子目录(文件夹)的方法与在 Windows 下的操作类似,使用菜单操作的次序是 File New Folder。在 Linux 的图形界面下对文件夹的拷贝、移动删除等操作也与 Windows 下的操作相似。

2. 3 Linux 基本操作命令

Linux 中的程序通常需要使用命令来启动和控制,这是在操作上与Windows 系统区别最大的地方。在Linux 系统中,所有的操作都可以用命令来实现,而用鼠标只能完成部分操作。命令可以直接在控制台中输入,也可以写在文件中,在使用"source"命令来执行。Linux 系统是对字母的大、小写敏感的系统,你必须保证其正确性。

以下几个命令是必须掌握的:

cd 命令

这个命令用来进入某个特定目录,常用使用方法如下:

- cd /tools/cds5这种方式用来进入一个绝对路径表示的目录。
- cd .. 用来进入当前目录的上一级目录。

cd work 用来进入当前目录下的 work 子目录(假设其存在)。 pwd 命令

这个命令用来显示当前所处的目录。当你不知道自己目前在哪个目录下时,输入该命令后,系统会告诉你所在的位置。

1s命令

这个命令用来列出当前目录下的内容。

cp 命令

拷贝命令,虽然大多数情况下,文件的拷贝操作可以通过图形界面 通过鼠标操作完成,但在特殊情况下,仍然需要使用命令操作。

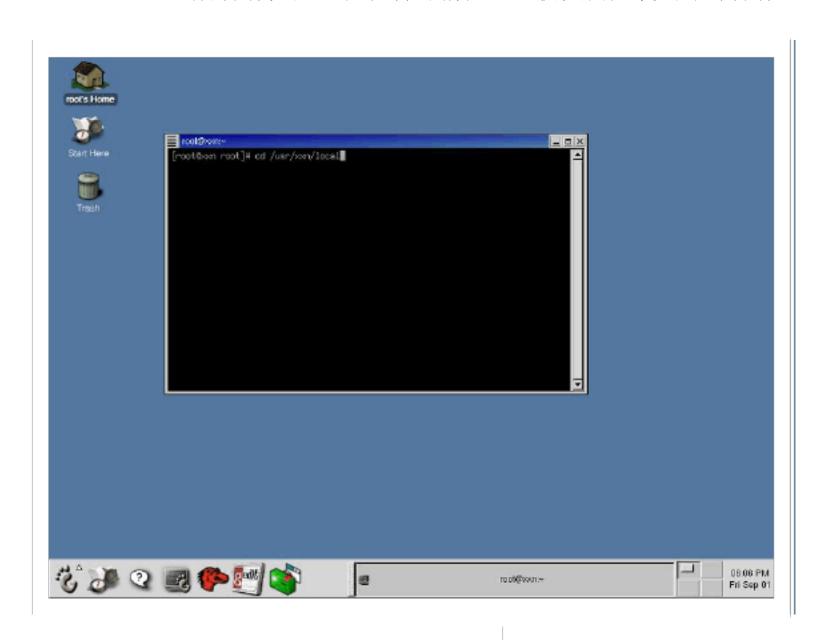


图 1-3 命令窗口

输入命令时,需要首先点击屏幕左下脚的黑色"电视"状图标,点击后将弹出一个窗口(如图),在程序运行时,该窗口可以最小化,但不能关闭,关闭则意味着退出。

2. 3 Linux与Windows 的文件共享

本实验中的机器在安装虚拟机时,已设置了文件共享。在F盘中需要有一个名为 sharel的文件夹(如果没有,可以新建一个),如果需要将 Windows 下的文件拷贝到 Linux 下,需要先将文件存放在该文件夹下,在 Linux 下,需要到/mnt/hgfs/share在看从 Windows 传过来的文件,再将其拷贝到工作目录下。

当需要从 Linux 向 Windows 传递时,需要使用命令方式将文件拷贝到/mnt/hgfs/shareFF,例如,如果需要将/usr/xxn/x1.拷贝到 Windows 下,需要使用以下命令:

cp /usr/xxn/x1.c /mnt/hgfs/shareF

注意,这里不能使用图形方式下的鼠标操作。当需要传递的文件较多时,你可以先将要传递的文件统一存放在一个中间目录中,如/usr/temp,然后使用

cp r /usr/temp /mnt/hgfs/shar

回到 Windows 下,可以在 F:/share下看到所传递的文件。

3、启动 Cadence IC50

由于 Cadence 软件在启动时将自动寻找工作目录下的初始化文件,因此在不同的目录下启动 Cadence 的效果不同。如果是首次使用该软件,你必须先建立一个自己的工作目录。为保持一致,你的工作目录需要建立在/usr下,以你的姓名的缩写命名,建立工作目录的方法如下:

- (1) 用鼠标双击屏幕上的"root home"图标
- (2) 点击菜单中的"up"进入上一级目录
- (3) 找到"usr"文件夹,双击。
- (4) 菜单操作 "File New Folder,将出现一个名为"untitled fol"de的新文件夹,单击文件夹名字(或先点鼠标右键,在选"Rename")。将文件夹以你的名字按上述方式命名。
- (5) 如果使用 NCSU (本课程开始阶段均使用该环境)环境,需要将/usr/xxn下的 local目录整体拷贝到你的文件夹(工作目录)下。
- (6) 点击命令输入窗口(屏幕下方黑色电视状图标)
- (7) 输入命令 cd /usr/yourname/loc回车(这里 yourname 是你所建立的工作目录名)
- (8) 输入命令 icfb回车
- (9) 这时将出现 Cadence 的图标(需要等待1分钟左右)

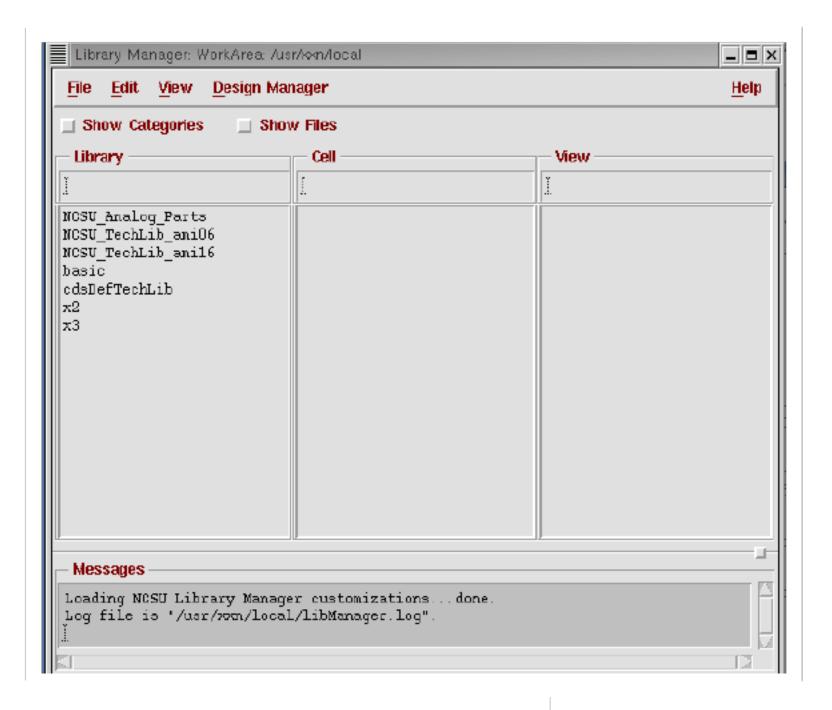


图 1-4 库管理器

- (10) 这时最前面的窗口是 "Library Manage" 窗口, 你应该至少看到以下 几个库名 "NCSU_Analog_Parts", "NCSU_Techlib_Ami16", "basić" 和 "CdsDefTechLib"。
- (11) 库管理器很重要,以后大部分操作需要通过它进行,例如,想打开一个已经存在的库,你可以直接点击该库名,再双击想编辑的 Cell View

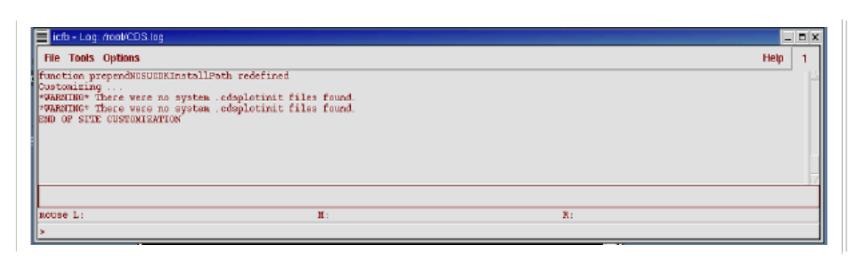


图 1-5 命令解释器窗口 CIW

启动 Cadence 后,还会看到其它两个窗口,一个是命令解释器(CIW),在该窗口中,你可以看到软件的执行情况,在很多情况下,需要观察一个命

令是否正常执行或出现何种错误。使用 Cadence 软件工作期间,CIW 不能 关闭,关闭 CIW 意味着退出 Cadence。

启动 Cadence 后的出现的另一个窗口是对软件版本的说明,可以关闭。

4、新建一个库

Cadence 下的基本工作单元是"库",你所建立的原理图、版图和符号等都称为"Cell View"(单元视图)都应该存放在库中。

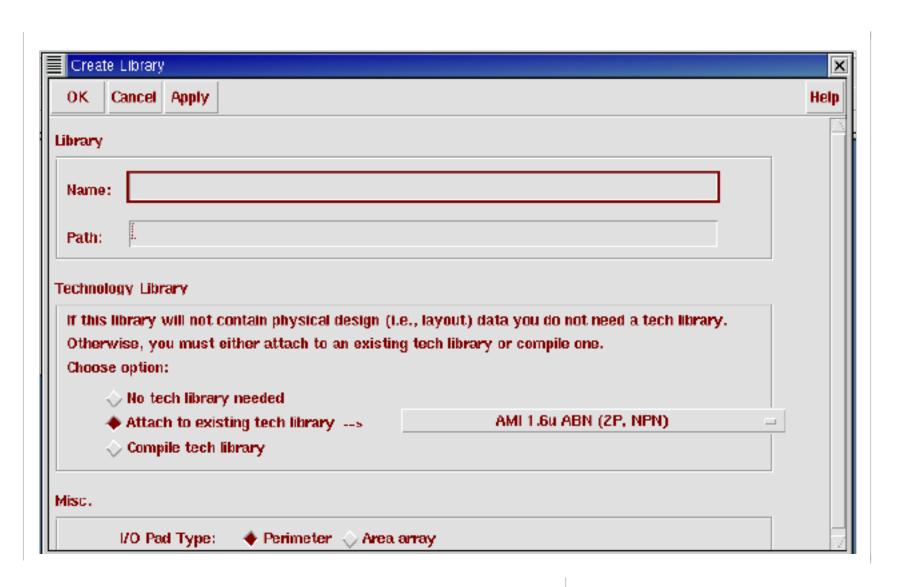


图 1-6 生成一个库的对话框

你也可以直接在 CIW 窗口中,利用 File New Librar操作生成库,操作方法与前面所讲的基本相同。如果是第一次使用本系统,你需要首先用 AMIO.6u 或

NCSU 支持的任何一种其它的工艺,生成一个名为 test的库,目的是利用该库检查一下你的系统是否设置正常。成功地建立一个库后,应能在库管理器中看到你新建的库名。

5、新建一个原理图 Cellview

上节所介绍的"库"实际上是一个目录,库中可能包含一个或多个"cell" (还没有找到一个贴切中文译名),一个库中的 cell具有某些共同的属性,如使 用同样的工艺、层定义、设计规则等。

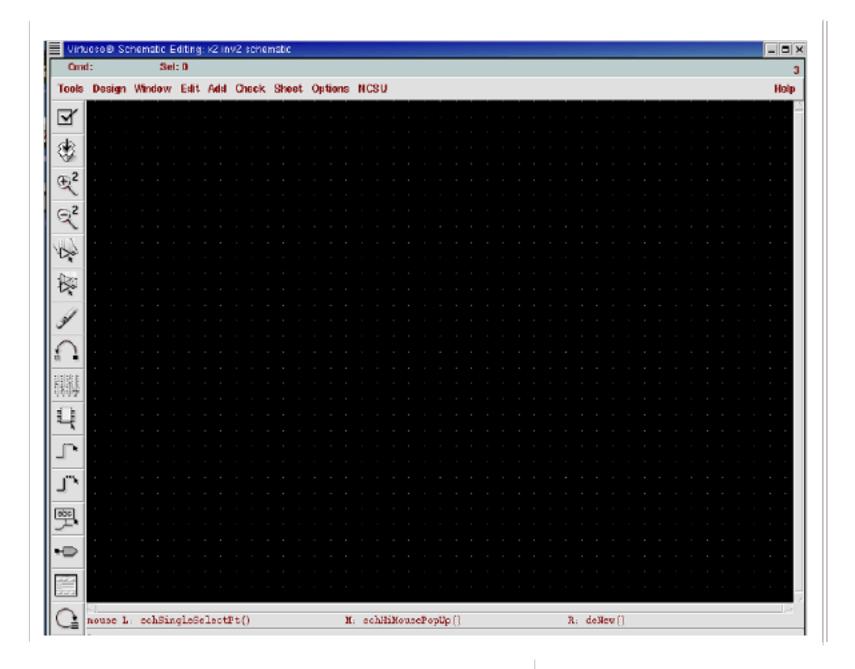
一个 cell是一个子目录,其中又包含一个或多个"视图"(cellview,如原理图视图、版图视图和符号视图等。cellview是最基本的文件。

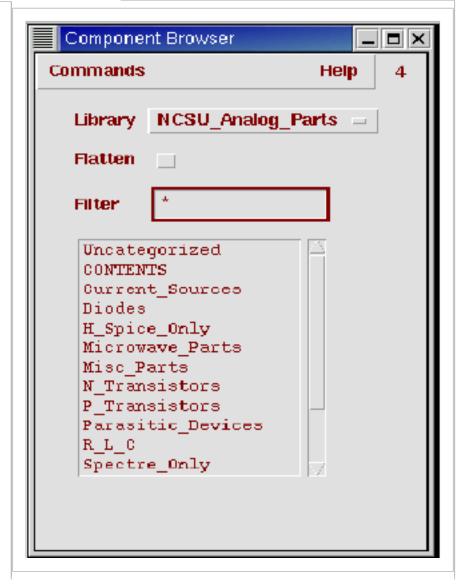
在库管理器中,使用菜单操作 File New Cellview可以建立一个 cellview 在出现图 1-7所示的窗口后,你必须首先选择库的名字,否则可能会将 cellview 建到了其它库中。其次,你需要利用工具按纽选择 cellvie 的类型,当建立原理 图时,应该选择"Composer-Schematić",而在画版图时,则应选择"Virtuső。 Cell的名字需要自己输入,视图 (view) 名字是自动变化的。

ок	Cancel	Defaults		Help
Library N	lame N	CSU_Anale	og_Parts =	
Cell Nam	e I]
View Name		schematic		
Tool		Composer-Schematic —		
Library p	ath file			
/usr/xx	n/local/d	:ds. libį		

图 1-7 建立 cellvie 对话框

在本节,你首先需要在 tes 库中建立一个名为 t1的 cel 的原理图视图,目的是检验系统安装是否正确。点击"OK"后,将出现一个如图 1-8 所示的原理图编辑窗口。注意,在该窗口的下方有当前状态下鼠标左、中(滚轮)和右键的功能提示。




图 1-8 原理图编辑窗口

6、放置元件

在本教程中,正式绘制原理图将从下一节开始,本节的任务是检查环境设置是否正确。点击"Add Instanc"后应弹出图1-9所示的窗口。

在以后几章中,绘制原理图所需要的元件,如NMOS、PMOS、电阻、电容、信号源等基本上来自"NCSU_Analog_Parts",如果看不到该库,说明软件安装或环境设置有问题。

双击其中某类元件,可以看到下一级的元件,如 N_Transistor下又分为多

种符号。当选定一个元件时,会出现如图 1-10所示的 窗口,但这个窗口通常是隐藏在原理图编辑窗口后面,

图 1-9 原理图库元件

你需要暂时最小化才能看到。

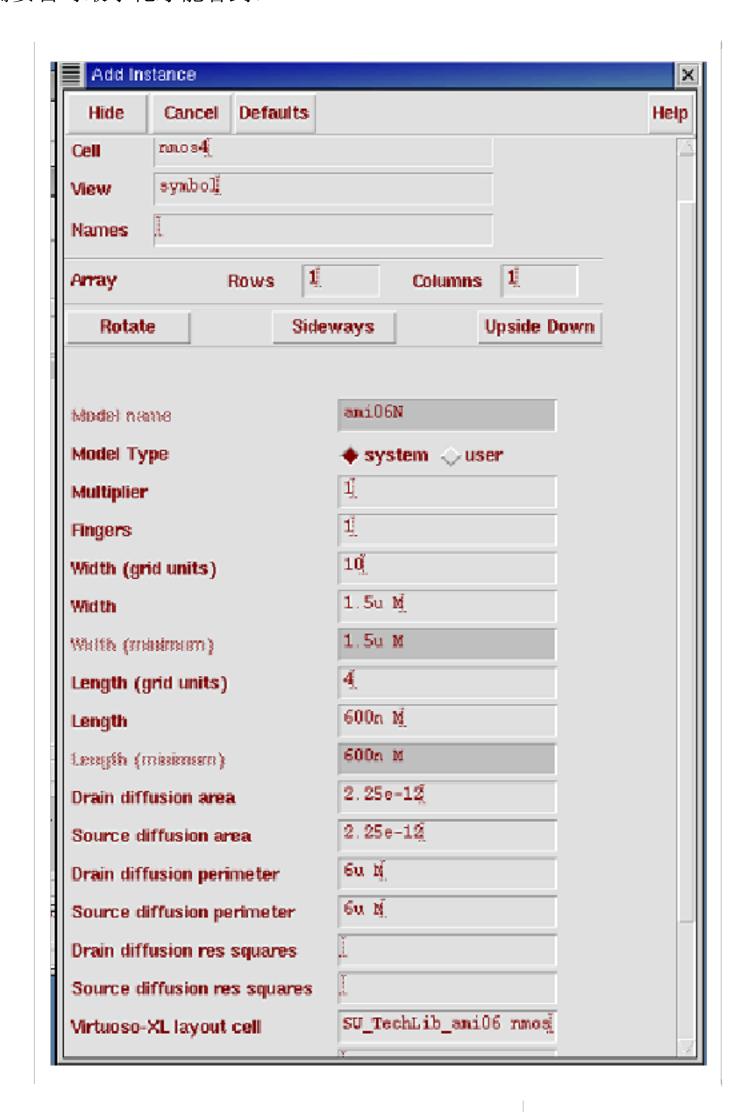


图 1-11 可能隐藏在后面的窗口

如果在添加器件时,没有能够填写正确的参数,你还可以在元件放在原理图后再修改,方法是选中需要修改参数元件,再点击图 1-8左边的"属性"工具(上数第9个),这时会弹出图 1-12所示的窗口。

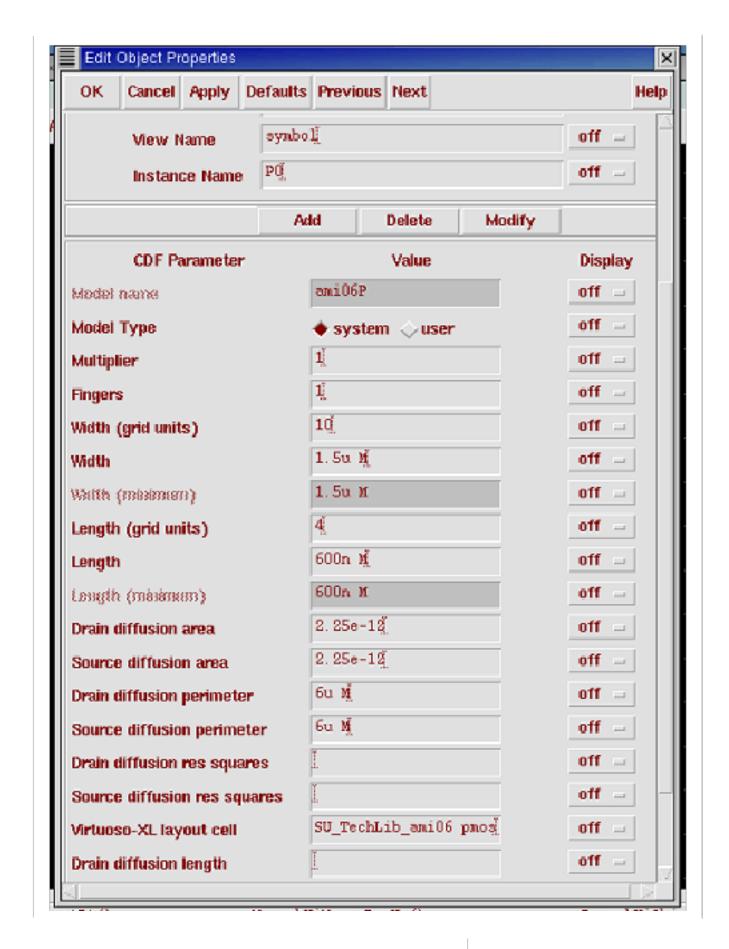


图 1-12 对象属性窗口

6、建立一个版图视图

正式画版图也是本教程后几节的内容,本节建立版图视图仍然是检验环境设置和库的建立过程是否正确。用类似建立原理图视图的方法,可以在库管理器或CIW中,用File New Cellview操作建立 tes_库的 Cell t的版图视图,只是在出现图 1-7所示的对话框时,工具应选"Virturő (Cell名不变)。如果图 1-13中的 LSW 窗口中各绘图层显示正常,则说明环境设置和库的建立是正确的。开始时,版图设计窗口和 LSW 窗口位置可能不正确,版图设计窗口需要按住"Alt"键来拖动。

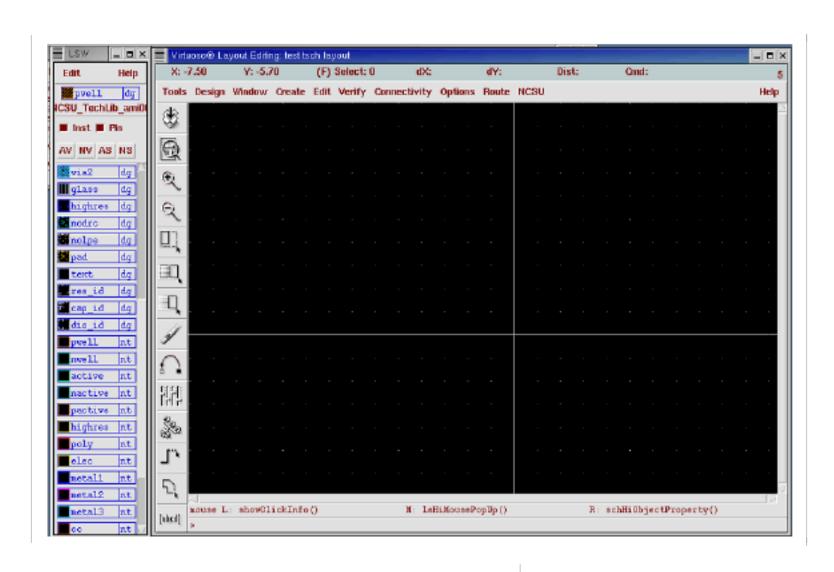


图 1-13 版图设计窗口

第二章 原理图输入和仿真分析

从本章起,我们将以一个 CMOS 反相器 (非门)的设计为例,介绍基于 Cadence 全定制环境 IC50 的设计流程。在本教程中,我们使用北卡罗来纳大学 编写的设计环境,我们选用 AMIO. 6u 工艺来实现该设计。

1、建立设计库

- (1) 启动虚拟机 参见第一章的相关内容
- (2) 进入/usr/yourname/loda 录

该目录是在上一章的练习中建立的,其中包含 NCSU 环境的初始化文件。这里 yourname 是每个人名字的英文缩写,local中的内容是从/usr/xxi下拷贝过来的。

命令: cd /usr/yourname/lo回库

(3) 启动 IC50

命令: icfb回车

- (4) 等待初始化结束
- (5) 新建一个名为 tutx的库

用库管理器窗口的菜单进行如下操作 File New Library 在弹出的窗口中,首先选择"Attach to existing tech libral"后选择 AMIO. 6u C5N (3M 2P high-re》工艺。

设置库名字为 tutx 这里 x 是一个数字,统一规定如下:按 Windows 桌面上本机使用者登记的次序编号,路径为/usr/yourname点击"OK"。在库管理器中应能看到

2、新建 Cellview

在库管理器窗口中进行如下操作 File New Cell View 这是应出现一个窗口。首先确保库的名字为 tutx(如果库名字不对,可按其右侧的按纽选择,如找不到,说明库的建立过程有问题),选择 Tool为 Composer Schematic Cell Type 应为 Schematic Cell Name为 inv。设置好后,点击"OK"应出现图 1-的原理图编辑窗口。

3、输入原理图

本章所设计的 CMOS 反相器是 AMIO6 工艺中最小尺寸的反相器,其中 NMOS 管和 PMOS 管的宽度 W 都是 1.5um,沟道长度为 0.6um。具体操作方法为:使用 Add Instance(也可以使用图中的工具)来放置元件,这些元件可以用 NCSU_Analog_Parts 库中的 N_TransistorP_Transistor的 nmos4 和 pmos4,电

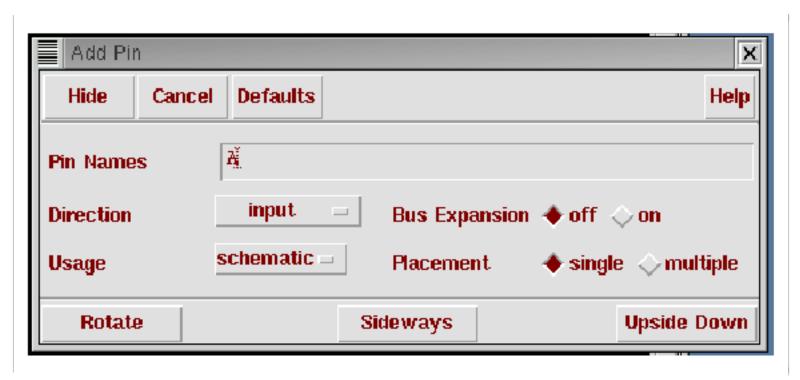


图 2-1 pi的设置窗口

源和接地的符号应在"Supply Nets"中选择,使用其中的"vdd"和"gnd"。使用 Add wire 画连线,使用 Add pin放置输入输出引脚,这时会弹出一个如图 2-1 所示的窗口,我们定义输入 pin的名字为 A,输出 pin的名字为 Y。在添加"Y"

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/81712116310
4010005