第 25 讲 规律探究

图 目标导航

课程标准

- 1.掌握数字类规律探究问题的几类题型的方法;
- 2.掌握等式类规律探究问题的几类题型的方法;
- 3.掌握图形类规律探究问题的几类题型的方法.

知识清单

知识点 01 规律探究常见的数字规律

规律总结	数列形式
2 <i>n</i> –1	1, 3, 5, 7, 9, ···, 2n-1
2 <i>n</i>	2, 4, 6, 8, 10, ···, 2n
3n + 1	4, 7, 10, 13, 16,, $3n+1$
3 <i>n</i> −1	2, 5, 8, 11, 14, ···, 3 <i>n</i> -1
2^n	$2, 4, 8, 16, 32, \cdots, 2^n$
2 ⁿ +1	$3, 5, 9, 17, 33, \cdots, 2^n + 1$
$n^2 + 1$	2, 5, 10, 17, 26,, $n^2 + 1$
n^2-1	$0, 3, 8, 15, 24, \cdots, n^2-1$
$(-1)^n x$	$-x$, $+x$, $-x$, $+x$, $-x$, $+x$,, $(-1)^n x$
$(-1)^{n+1}x$	$+x$, $-x$, $+x$, $-x$, $-x$, \cdots , $(-1)^{n+1}x$
$\frac{n(n+1)}{2}$	1, 3, 6, 10, 15, 21,, $\frac{n(n+1)}{2}$
斐波那契数列	1,1,2,3,5,8,13,,从第三个数开始每个数等于与它相邻的前两个数之和

知识点 02 规律探究方法总结

- 1.规律探究的核心是找出每个数与对应的位次(即n)之间的关系;
- 2.若数列为分数数列,则分子分母分开找规律;
- 3.若数列是正负交替排列,则在答案前加上(-1)ⁿ;若数列是负正交替排列,则在答案前加上(-1)ⁿ⁺¹;
- 4.若是选择题,则可以用代值法,再利用排除法选出正确答案即可.

知识点 03 高斯求和定理

$$1+2+3+4+\cdots+n-1+n=\frac{(\text{\'at}\,\overline{\psi}+\overline{x}\,\overline{\psi})\times\overline{\psi}\underline{\psi}}{2}=\frac{(1+n)\cdot n}{2}.$$

🍱 考点精析

考点一 数字类规律探究

类型一 数字类规律探究(1)

例 1 观察这些数的规律, 3, -8, 15, -24, 35, ...则第 10 个数是 ...

例 2 | 观察下列关于 x 的单项式,探究其规律,x, $3x^2$, $5x^3$, $7x^4$, $9x^5$, $11x^6$, ...按照上述规律,第 2019 个单项式是()

- A. $2019x^{2019}$
- B. $4037x^{2018}$
- C. $4037x^{2019}$ D. $4039x^{2019}$

变 1 按一定规律排列的一列数依次为 2, - 5, 10, - 17, 26, - 37, ..., 按此规律排列下去, 这列数 中的第20个数是 .

变 2 按一定规律排列的单项式: x^3 , $-x^5$, x^7 , $-x^9$, x^{11} ,, 第 n 个单项式是(

- A. $(-1)^n x^{2n-1}$ B. $(-1)^{n-1} x^{2n+1}$ C. $(-1)^{n-1} x^{2n-1}$ D. $(-1)^n x^{2n+1}$

例 3 观察下面一列数,根据规律写出横线上的数, $-\frac{1}{1}$; $\frac{1}{2}$; $-\frac{1}{3}$; $\frac{1}{4}$; _____; ____;; 第 2021

个数是

例 4 有一列数按如下规律排列: $-\frac{\sqrt{2}}{2}$, $-\frac{\sqrt{3}}{4}$, $\frac{1}{4}$, $-\frac{\sqrt{5}}{16}$, $-\frac{\sqrt{6}}{32}$, $\frac{\sqrt{7}}{64}$, ...则第 2017 个数是_____.

例 5 观察下列一组数: $-\frac{3}{2}$, 1, $-\frac{9}{8}$, $\frac{17}{11}$, $-\frac{33}{14}$, ..., 它们是按一定规律排列的,那么这一组数的

第8个数是

变3 给定一列按规律排列的数: -1, $\frac{3}{4}$, $-\frac{5}{6}$, $\frac{7}{16}$, ..., 则第 9 个数为_____.

変 4 观察下面一列数: 1, $-\frac{3}{4}$, $\frac{8}{9}$, $-\frac{15}{16}$, $\frac{24}{25}$,, 按照这个规律, 第 10 个数应该是_____.

变 5 察下列一组数: $\frac{1}{3}$, $-\frac{4}{5}$, $\frac{9}{7}$, $-\frac{16}{9}$, $\frac{25}{11}$, ..., 它们是按照一定规律排列的,那么这组数的第

个数是()

- A. $\frac{n^2}{2n+1}$ B. $(-1)^n \frac{2n}{2n+1}$ C. $(-1)^n \frac{n^2}{2n-1}$ D. $(-1)^{n-1} \frac{n^2}{2n+1}$

类型二 数字类规律探究(2)

例 1 | 若 2^1 =2, 2^2 =4, 2^3 =8, 2^4 =16, 2^5 =32...,则 2^{2022} 的末位数字是 () A. 2 C. 8 B. 4 D. 6 **例 2** | 观察式子: $7^1=7$, $7^2=49$, $7^3=343$, $7^4=2401$, $7^5=16807$, $7^6=117649$, ...,请你判断 7^{2019} 的结果的个位数 是() C. 7 A. 1 B. 3 D. 9 例 3 观察下列等式: $7^1 = 7.7^2 = 49.7^3 = 343.7^4 = 2401.7^5 = 16087, ...$,那么 $7^1 + 7^2 + 7^3 + 7^4 + 7^5 ... + 7^{2020}$ 的 末位数字是() B. 3 C. 7 D. 0 A. 1 **变 1** 观察下列等式; 3¹=3, 3²=9, 3³=27, 3⁴=81, 3⁵=243, 3⁶=729, 3⁷=2187......, 则第 2018 个等式幂的结果的末位数字是 . **变 2** | 观察下列等式: $7^0=1$, $7^1=7$, $7^2=49$, $7^3=343$, $7^4=2401$, $7^5=16807$, ..., 根据其中的规律可得, 7 $+7^{1}+7^{2}+...+7^{2019}+7^{2020}$ 的结果的个位数是 ()

类型三 数字类规律探究(3)

B. 1

例 1 已知一列数: 1,-2,3,-4,5,-6,7,.....将这列数如下排列,第10行从左边数第5个数等于

C. 7

D. 8

第1行 1

A. 0

第2行 -2 3

第3行 -4 5 -6

第4行 7-8 9-10

第5行 11 12 13 -14 15

. . .

例 2 将 1, $-\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{4}$, $\frac{1}{5}$, $-\frac{1}{6}$, ..., 按一定规律排列如下:

第1行

$$-\frac{1}{2}$$
 $\frac{1}{3}$

第 3 行
$$-\frac{1}{4}$$
 $\frac{1}{5}$ $-\frac{1}{6}$

第 4 行
$$\frac{1}{7}$$
 $-\frac{1}{8}$ $\frac{1}{9}$ $-\frac{1}{10}$

第 5 行
$$\frac{1}{11}$$
 $-\frac{1}{12}$ $\frac{1}{13}$ $-\frac{1}{14}$ $\frac{1}{15}$

请你写出第 20 行从左至右第 10 个数是

例 3 观察下列两行数:

0, 2, 4, 6, 8, 10, 12, 14, 16, ...

0, 3, 6, 9, 12, 15, 18, 21, 24, ...

探究发现:第1个相同的数是0,第2个相同的数是6,...,

若第n个相同的数是 102,则n等于()

A. 20

B. 19

C. 18

D. 17

变 1 如图,将正整数按此规律排列成数表,则 2022 是表中第 行第 列.

7 8 9 10 11 12 13 14 15

观察下面的数: 变 2

按着上述的规律排下去,那么第12行从左边数第4个数是()

A. -121

B. -123

C. -125

D. -127

- (1) 第7行第1个数是____, 第20行第1个数是____;
- (2) 数"180"是第几行第几个数?

考点二 等式类规律探究

类型一 等式类规律探究(1)

- B. 5^2
- C. 6^2 D. 7^2

例 2 已知整数 a_1 , a_2 , a_3 , a_4 , …满足下列条件: a_1 =0, a_2 =- $|a_1$ +1|, a_3 =- $|a_2$ +2|, a_4 =- $|a_3$ +3|, …, 依此

类推,则 a_{2022} 的值为 ()

- A. -1010
- B. -1011 C. -1012
- D. -2022

例3 已知: $\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1\frac{1}{2}$, $\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1\frac{1}{6}$, $\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}=1\frac{1}{12}$, …,根据此规律

$$\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=$$
______.

变 1 下列式子: $3^2+4^2=5^2$, $8^2+6^2=10^2$, $15^2+8^2=17^2$, $24^2+10^2=26^2$ ……请你利用发现的规律写出第五

个等式 .

故答案为: $35^2 + 12^2 = 37^2$.

变 2 观察下列式子: $\sqrt{1^3} = \sqrt{1^2} = 1$; $\sqrt{1^3 + 2^3} = \sqrt{3^2} = 3$; $\sqrt{1^3 + 2^3 + 3^3} = \sqrt{6^2} = 6$;

 $\sqrt{1^3+2^3+3^3+4^3} = \sqrt{10^2} = 10$; …根据上述规律,计算: $\sqrt{1^3+2^3+3^3+\cdots+100^3} = \cdots$

变 3 通过计算发现 $2^2-2^1=2$, $2^3-2^2=2^2$, $2^4-2^3=2^3$,则 $2^1+2^2+2^3+\cdots+2^{2021}-2^{2022}=$ _____.

例 4 如图,观察所给算式,找出规律:

1+2+1=4,

1+2+3+2+1=9,

1+2+3+4+3+2+1=16,

$$1+2+3+4+5+4+3+2+1=25$$
,

.

根据规律计算1+2+3+…+19+20+19+…+3+2+1=____.

变 4 观察下列各式的计算结果:

$$1 - \frac{1}{2^{2}} = 1 - \frac{1}{4} = \frac{3}{4} = \frac{1}{2} \times \frac{3}{2};$$

$$1 - \frac{1}{3^{2}} = 1 - \frac{1}{9} = \frac{8}{9} = \frac{2}{3} \times \frac{4}{3};$$

$$1 - \frac{1}{4^{2}} = 1 - \frac{1}{16} = \frac{15}{16} = \frac{3}{4} \times \frac{5}{4};$$

$$1 - \frac{1}{5^{2}} = 1 - \frac{1}{25} = \frac{24}{25} = \frac{4}{5} \times \frac{6}{5} \dots$$

- (1) 用你发现的规律填写下列式子的结果: $1 \frac{1}{6^2} = _{---} \times _{---}$; $1 \frac{1}{10^2} = _{---} \times _{---}$.
- (2) 用你发现的规律计算:

$$(1-\frac{1}{2^2}) \times (1-\frac{1}{3^2}) \times (1-\frac{1}{4^2}) \times ... \times (1-\frac{1}{2020^2}) \times (1-\frac{1}{2021^2}) \times (1-\frac{1}{2022^2}).$$

变5 研究下列算式,你会发现什么规律?

 $1 \times 3 + 1 = 2^2$; $2 \times 4 + 1 = 3^2$; $3 \times 5 + 1 = 4^2$; $4 \times 6 + 1 = 5^2$.

- (1)请写出第9个式子;
- (2) 请用含n的式子表示第n个式子: ;

(3) 计算
$$\left(1+\frac{1}{1\times3}\right)$$
× $\left(1+\frac{1}{2\times4}\right)$ × $\left(1+\frac{1}{3\times5}\right)$ × $\left(1+\frac{1}{4\times6}\right)$ ×···× $\left(1+\frac{1}{10\times12}\right)$ 的值时可以这样做:
解: 原式= $\frac{1\times3+1}{1\times3}$ × $\frac{2\times4+1}{2\times4}$ × $\frac{3\times5+1}{3\times5}$ × $\frac{4\times6+1}{4\times6}$ ×···× $\frac{10\times12+1}{10\times12}$
= $\frac{2^2}{1\times3}$ × $\frac{3^2}{2\times4}$ × $\frac{4^2}{3\times5}$ × $\frac{5^2}{4\times6}$ ×···× $\frac{11^2}{10\times12}$
= $\frac{2}{1}$ × $\frac{2}{3}$ × $\frac{3}{2}$ × $\frac{3}{4}$ × $\frac{4}{3}$ × $\frac{5}{4}$ × $\frac{5}{4}$ × $\frac{5}{6}$ ×···× $\frac{11}{10}$ × $\frac{11}{12}$
= $\frac{2}{1}$ × $\frac{11}{12}$
= $\frac{11}{6}$.

请你用发现的规律解决下面的问题:

计算:
$$\left(1 + \frac{1}{11 \times 13}\right) \times \left(1 + \frac{1}{12 \times 14}\right) \times \left(1 + \frac{1}{13 \times 15}\right) \times \left(1 + \frac{1}{14 \times 16}\right) \times \cdots \times \left(1 + \frac{1}{21 \times 23}\right)$$

类型二 等式类规律探究(2)

例 2 观察下列等式:
$$\frac{1}{1\times 2} = 1 - \frac{1}{2}, \frac{1}{2\times 3} = \frac{1}{2} - \frac{1}{3}, \frac{1}{3\times 4} = \frac{1}{3} - \frac{1}{4}$$
 将以上三个等式的两边分别相加得
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - 1 - \frac{1}{4} = \frac{3}{4}.$$

(1) 猜想并写出
$$\frac{1}{2020 \times 2021} =$$
 . (不必写出计算结果)

(2) 直接写出下列各式的计算结果: ①
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{2019\times 2020} =$$
_____;

$$(2)\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{199\times 201} = \dots;$$

(3) 填空:
$$\frac{3}{1\times4} + \frac{3}{4\times7} + \frac{3}{7\times10} + \dots + \frac{3}{2020\times2023} = \dots$$
.

变 1 观察下列等式:

第 1 个等式:
$$a_1 = \frac{1}{1 \times 3} = \frac{1}{2} \times (1 - \frac{1}{3})$$
;

第 2 个等式:
$$a_2 = \frac{1}{3 \times 5} = \frac{1}{2} \times (\frac{1}{3} - \frac{1}{5});$$

第 3 个等式:
$$a_3 = \frac{1}{5 \times 7} = \frac{1}{2} \times (\frac{1}{5} - \frac{1}{7});$$

第 4 个等式:
$$a_4 = \frac{1}{7 \times 9} = \frac{1}{2} \times (\frac{1}{7} - \frac{1}{9})$$
;

请解答下列问题:

- (1) 按以上规律列出第 5 个等式: a_5 =____=;
- (2) 按以上规律列出第 2015 个等式: *a*₂₀₁₅=____=;
- (3) 求 $a_1+a_2+a_3+a_4+...+a_{2016}$ 的值.

变2 (1) 请观察下列算式:
$$\frac{1}{1\times 2} = 1 - \frac{1}{2}$$
, $\frac{1}{2\times 3} = \frac{1}{2} - \frac{1}{3}$, $\frac{1}{3\times 4} = \frac{1}{3} - \frac{1}{4}$, $\frac{1}{4\times 5} = \frac{1}{4} - \frac{1}{5}$, ...,

(2) 运用以上规律计算:
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{90} + \frac{1}{110} + \frac{1}{132}$$
.

变 3 观察下列各式:

$$\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1\times 2}\,,\quad \sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2\times 3}\,,\quad \sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}=1+\frac{1}{3\times 4}\,,\quad \dots .$$
 请利用你所发现的规律,计算 $\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\dots +\sqrt{1+\frac{1}{2021^2}+\frac{1}{2022^2}}$,其结果为______.

考点三 图形类规律探究

类型一 图形规律探究(1)

		. —		
1 1	1 1			l
1 1	1 1			
				J

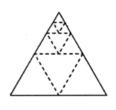
A. 4*n*

B. 3n+1

C. 3*n*

D. 3n-1

例 2 如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,剪的次数记为 n,得到的正三角形的个数记为 a_n ,如 $a_1 = 4$, $a_2 = 7$ ……,则 $a_{2020} = ($)



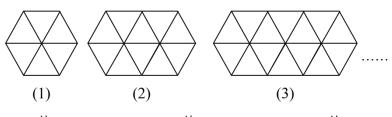
A. 6058

B. 6059

C. 6060

D. 6061

例3 如图,图(1)是由 6 块完全相同的正三角形地砖铺成,图(2)是由 10 块完全相同的正三角形地砖铺成,图(3)是由 14 块完全相同的正三角形地砖铺成,图(3)是由 14 块完全相同的正三角形地砖铺成,……,按图中所示规律,则图(8)所需地砖数量为(

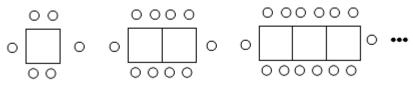


A. 26 块

B. 30 块

C. 34 块 D. 38 块

例 4 按如图的方式摆放餐桌和椅子, n 张餐桌可以摆放多少把椅子? ()



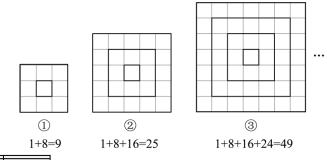
A. 4n+2

B. 4n+1

C. 5n+2

D. 5*n*-2

例 5 \mid 观察下列图形及图形所对应的等式,根据你发现的规律,写出第n 幅图形对应的等式 .



例 6 如图,第n 个图形需要的棋子数量是 . (用含有n 的代数式表示)

 \mathfrak{v}_1 下面图案是用长度相同的火柴棒按一定规律拼搭而成,若第n个图案需要y根火柴棒,则y与n

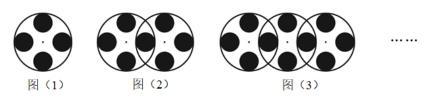
的函数关系式为()

第1个图案 第2个图案 第3个图案 第4个图案

A. y = 3n

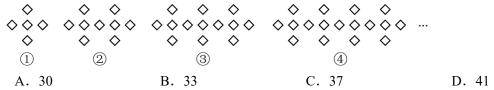
B. y = 3n + 3 C. y = 4n + 3 D. y = 4n - 1

变 2 ▼ 下列图形都是由圆和几个黑色围棋子按一定规律组成,图 (1) 中有 4 个黑色棋子,图 (2) 中有 7个黑色棋子,图(3)中有10个黑色棋子,...,依次规律,图(2022)中黑色棋子的个数是()



A. 6067 B. 6066 C. 6065 D. 6064

变3 用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑧个图案中正方形的个数为()

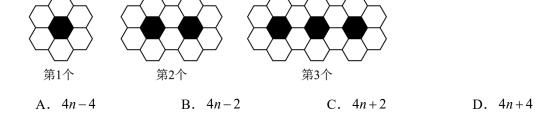


变 4 用大小相同的棋子按如下规律摆放图形,第 2022 个图形的棋子数为()

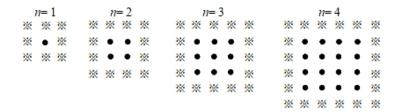
A. 6069 个 B. 6066 个 C. 6072 个 D. 6063 个

── 変 5 如图,第 1 个图案是由灰白两种颜色的六边形地面砖组成的,第 2 个,第 3 个图案可以看成是由

第 1 个图案经过平移而得,那么第 $n(n \ge 2)$ 个图案中有白色六边形地面砖的块数是(



变 6 植物园内,月季花按正方形种植,在它的周围种植牵牛花,如图反映了月季花的列数(n)和牵牛花的数量规律,那么当 n=2021 时,牵牛花的数量为(



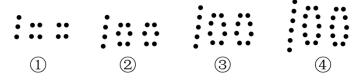
A. 8076 株

B. 8080 株

C. 8084 株

D. 8088 株

在庆祝建党"100周年"的活动上,某学校用围棋棋子按照某种规律摆成如图所示的"100"字样,按 照这种规律,第 2022 个"100"字样的棋子个数是

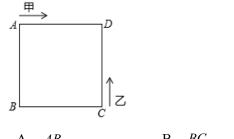


将一些半径相同的小圆按如图所示的规律摆放,第 10 个图形有_____个小圆.

第 2 个图形 第3个图形 第 4 个图形 第 1 个图形

类型二 图形规律探究(2)

如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依 顺时针方向环行, 乙点依逆时针方向环行, 若乙的速度是甲的速度的 4 倍, 则它们第 2021 次相遇在边(上.



A. AB

B. *BC*

C. CD

D. DA

桌面上有一个正方体,每个面均有一个不同的编号(1,2,3,...,6),且每组相对面上的编号 和为 7. 将其按顺时针方向滚动(如图),每滚动90°算一次,则滚动第 2022 次后,正方体朝下一面的数字 是 (

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/81807214012 2006102