2024-2025 学年度第一学期高一数学期末模拟卷

注意事项:

1. 答题前填写好自己的姓名、班级、考号等信息

2. 请将答案正确填写在答题卡上

第 I 卷 (选择题)

请点击修改第I卷的文字说明

	单选题
•	中心咫

1. 已知命题 $P: \exists x \in \mathbb{R}, x^3 > 2^x$,则它的否定形式 $\neg P$ 为()

A. $\exists x \in \mathbf{R}$, $x^3 \le 2^x$

B. $\forall x \in \mathbf{R}$, $x^3 > 2^x$

C. $\exists x \notin \mathbf{R}$, $x^3 \le 2^x$

D. $\forall x \in \mathbf{R}$, $x^3 < 2^x$

2. 设角 θ 的终边经过点 $P\left(\frac{3}{5}, -\frac{4}{5}\right)$,那么 $2\sin\theta + \cos\theta$ 等于()

A. $\frac{2}{5}$ B. $-\frac{2}{5}$ C. 1 D. -1

3. 下列函数中, 值域为[0,1]的是()

A. $y = x^2$ B. $y = \sin x$ C. $y = \frac{1}{x^2 + 1}$ D. $y = \sqrt{1 - x^2}$

4. 己知集合 $A = \left\{ x \middle| \frac{x-3}{x-6} \le 0 \right\}$, $B = \left\{ x \middle| x^2 - 3x - 10 < 0 \right\}$, 则 $\delta_R(A \mid B) = ($)

A. $(-\infty,3)$ U $[5,+\infty)$

B. $(-\infty,3]U(5,+\infty)$ C. $(-\infty,3)U(5,+\infty)$

D. $(-\infty,3]U[5,+\infty)$

5. 已知x > 0, y > 0, 且 $\frac{2}{x} + \frac{1}{v} = 2$, 若 $x + 2y > m^2 - 3m$ 恒成立,则实数m的取值范围是 ()

A. $m \le -1$ 或 $m \ge 4$

B. -1 < m < 4

C. $m \le -4$ 或 $m \ge 2$

D. -4 < m < 2

6. 函数 y = f(x) 与函数 y = h(x) 的图象关于 x 轴对称,且函数 y = f(x-a) + b 是奇函数,

则函数y = h(x)图象的对称中心是()

A. (a,b) B. (-a,b) C. (-a,-b) D. (a,-b)

7. 已知函数 f(x) 的定义域**R**, 且满足: 当x > 0时, $f(x) = \begin{cases} 2^{-x} + \frac{1}{4}, & 0 < x \le 2 \\ 2(x-3)^2, & x > 2 \end{cases}$

 $y = f(x) + \frac{1}{4}$ 是奇函数. 关于x 的方程 $f(x) = kx - \frac{1}{4}(k \in \mathbf{R})$ 的根为 \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{L} , \mathbf{x}_m , 若 $\sum_{i=1}^{m} f(x_i) = -\frac{7}{4}, 则 k 的值可以为 ()$

- A. $\frac{1}{4}$
- B. $\frac{3}{4}$
- C. $\frac{5}{4}$ D. $\frac{7}{4}$

8. 设函数 f(x)的定义域为 R, 若存在常数 M > 0, 使 $|f(x)| \le M|x|$ 对一切实数 x 均成立,

则称 f(x) 为"倍约束函数".现给出下列函数: ① f(x) = 2x; ② $f(x) = x^2 + 1$; ③

 $f(x) = \sin x + \cos x$; ④ f(x) 是定义在实数集 R 上的奇函数,且对一切 x_1, x_2 均有

 $|f(x_1)-f(x_2)| \le 2|x_1-x_2|$.其中是"倍约束函数"的有

- A. 1 个 B. 2 个

- C. 3 个 D. 4 个

二、多选题

9. 下列各式一定成立的是()

A.
$$2^{-1} = \frac{1}{2}$$

B.
$$\sqrt{a^2} = a$$

C.
$$\sqrt[3]{8^2} = 4$$

D.
$$(-a)^2 \cdot (-a)^3 = a^5$$

10. 已知函数 f(x) 满足对于任意不同的实数 x, y, 都有 $f(x)+f(y)>\frac{xf(y)-yf(x)}{x-y}$, 则

()

A.
$$f(1) > 0$$

B.
$$f(-1)+f(1)<0$$

C.
$$(x^2+1) f(x^2+1) > xf(x)$$

D.
$$\frac{f(x^2+1)}{x^2+1} > \frac{f(x)}{x}$$

11. 已知函数 f(x) 是定义在 R 上的奇函数, 当 x < 0 时, $f(x) = \frac{3}{2-x} - 1$, 则下列正确的是 ()

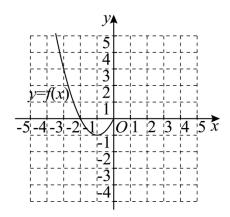
A.
$$\stackrel{\triangle}{=} x > 0$$
 Ft, $f(x) = 1 - \frac{3}{2+x}$

B.
$$f(0) = \frac{1}{2}$$

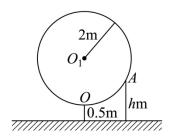
- C. 不等式xf(x) < 0的解集为(-1,0)U(0,1)
- D. 函数 y = |f(x)| a 的图象与 x 轴有 4 个不同的交点,则 $0 < a < \frac{1}{2}$

第 II 卷 (非选择题)

请点击修改第 II 卷的文字说明


三、填空题

- 12. 若x满足 $(\log_2 x)^2 2\log_2 x 3 = 0$,则x =_____.
- 13. 已知 f(x) 是 **R** 上的偶函数,且 f(x) 在 $(-\infty,0]$ 上是严格增函数,若 $f(a) \ge f(2)$,则 a 的取值范围是_____.
- 14. 已知函数 $f(x) = \begin{cases} a |x a|, x \ge 0 \\ |x + a| a, x < 0 \end{cases}$, 其中常数 a > 0, 给出下列结论:
- ① f(x) 是 R 上的奇函数;
- ②当 $a \ge 4$ 时, $f(x-a^2) \ge f(x)$ 对任意 $x \in R$ 恒成立;
- (3) f(x) 的图象关于 x = a 和 x = -a 对称;
- ④若对 $\forall x_1 \in (-\infty, -2), \exists x_2 \in (-\infty, -1), 使得 f(x_1) f(x_2) = 1, 则 a \in \left(\frac{1}{2}, 1\right).$


其中正确的结论是 . (请填上你认为所有正确结论的序号)

四、解答题

- 15. 已知集合 $A = \{x | 3 \le x < 5\}$, $B = \{x | 4x 3 \ge 2x + 5\}$.
- (1)求AUB;
- (2)求($\mathring{\mathbf{d}}_{\mathbf{k}}A$) I ($\mathring{\mathbf{d}}_{\mathbf{k}}B$).
- 16. 已知函数 f(x) 是定义在 **R** 上的奇函数,且当 $x \le 0$ 时, $f(x) = x^2 + 2x$.

- (1)求出当x > 0时,f(x)的解析式;
- (2)如图,请补出函数f(x)的完整图象,根据图象直接写出函数f(x)的单调递减区间;
- (3)结合函数图象,讨论函数f(x)在[-3,a]上的值域.
- 17. 如图,某大风车的半径为2m,按逆时针方向匀速转动,每12s 旋转一周,它的最低点O 离地面0.5m.风车圆周上一点A 从最低点O 开始,运动ts 后与地面的距离为hm.

- (1)求函数h = f(t)的关系式;
- (2)画出函数 $h = f(t)(0 \le t \le 12)$ 的大致图象.
- 18. 已知 $a,b,c \in \mathbb{R}$, 关于 x 的一元二次不等式 $-x^2 + bx + 6 > 0$ 的解集为 $\{x | -2 < x < c\}$.
- (1)求 b, c 的值;
- (2) 若 a 为非负实数,解关于 x 的不等式 $ax^2 (ac + b)x + bc < 0$.
- 19. 现定义了一种新运算" \oplus ": 对于任意实数x, y, 都有 $x \oplus y = \log_a \left(a^x + a^y \right)$ (a > 0且 $a \neq 1$).
- (1)当a = 2时, 计算 4⊕4;
- (2)证明: $\forall x, y, z \in \mathbf{R}$, 都有 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$;
- (3)设 $m = \log_a (x^2 3ax + 2a^2)$, 若 $f(x) = m \oplus m \log_a 2$ 在区间[s,t](0 < s < t < a)上的值域为

 $[\log_a t, \log_a s]$, 求实数a的取值范围.

参考答案:

题号	1	2	3	4	5	6	7	8	9	10
答案	D	D	D	A	В	В	В	В	AC	AC
题号	11									
答案	ACD									

1. D

【解析】利用特称命题的否定形式,直接判断选项.

【解析】命题的否定,需要修改量词并且否定结论,

所以命题 $P: \exists x \in \mathbb{R}, x^3 > 2^x$,则它的否定形式 $\neg P$ 为 $\forall x \in \mathbb{R}, x^3 \leq 2^x$.

故选: D.

2. D

【分析】利用任意角的三角函数的定义可求出 $\sin\theta$, $\cos\theta$ 的值,从而可求得答案

【解析】解:因为角 θ 的终边经过点 $P\left(\frac{3}{5},-\frac{4}{5}\right)$,

所以
$$\sin \theta = -\frac{4}{5}$$
, $\cos \theta = \frac{3}{5}$,

所以
$$2\sin\theta + \cos\theta = 2\times\left(-\frac{4}{5}\right) + \frac{3}{5} = -1$$
,

故选: D

3. D

【解析】求出选项函数值域得解.

【解析】 $y = x^2$ 的值域为[0,+∞) ; $y = \sin x$ 的值域为[-1,1]; $y = \frac{1}{x^2 + 1}$ 的值域为(0,1];

$$v = \sqrt{1 - x^2}$$
 的值域为[0,1]

故选:D

【小结】熟练掌握基本初等函数的值域求法是解题关键.

4. A

【分析】解不等式确定集合 A,B, 然后由集合运算定义计算.

【解析】
$$A = \left\{ x \middle| \frac{x-3}{x-6} \le 0 \right\} = \left\{ 3 \le x < 6 \right\}$$
,

$$B = \left\{ x \middle| x^2 - 3x - 10 < 0 \right\} = \left\{ x \middle| -2 < x < 5 \right\},\,$$

$$\therefore A \cap B = [3,5),$$

$$\therefore \eth_{R}(A \cap B) = (-\infty,3) \cup [5,+\infty),$$

故选: A.

本题考查集合的综合运算,掌握集合运算定义是解题基础,还考查了解分式不等式和一元二次不等式,属于基础题.

5. B

【分析】利用基本不等式求出x+2y的最小值,再将不等式恒成立转化为最值问题,解不等式可得结果.

【解析】因为
$$x>0$$
, $y>0$, 且 $\frac{2}{x}+\frac{1}{v}=2$,

$$\text{Figure } x + 2y = \frac{1}{2} \left(x + 2y \right) \left(\frac{2}{x} + \frac{1}{y} \right) = \frac{1}{2} \left(\frac{4y}{x} + \frac{x}{y} + 4 \right) \geq \frac{1}{2} \left(2\sqrt{\frac{4y}{x} \cdot \frac{x}{y}} + 4 \right) = 4 \text{ ,}$$

当且仅当
$$\frac{4y}{x} = \frac{x}{y}$$
, 即 $x = 2, y = 1$ 时等号成立,

即x+2y的最小值为4,

所以 $x+2y>m^2-3m$ 恒成立,可化为 $4>m^2-3m$,

即 $m^2 - 3m - 4 < 0$,解得 -1 < m < 4.

故选: B.

6. B

【分析】根据奇函数和中心对称的性质求解即可.

【解析】因为y = f(x-a) + b是奇函数,

$$f(-x-a)+b+f(x-a)+b=0$$
, $\mathbb{R}^{2} f(-a-x)+f(-a+x)=-2b$,

所以f(x)是关于(-a,-b)对称.

由于函数y = f(x)与函数y = h(x)的图象关于x轴对称

所以y = h(x)的中心对称点为(-a,b).

故选: B

7. B

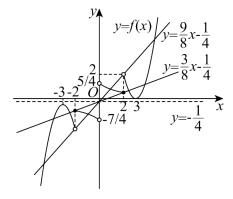
【分析】画出 $y = f(x), y = kx - \frac{1}{4}$ 的图象,结合图象以及对称轴来求得正确答案.

【解析】 当
$$x > 0$$
 时, $f(x) = \begin{cases} 2^{-x} + \frac{1}{4}, 0 < x \le 2\\ 2(x-3)^2, x > 2 \end{cases}$

因为 $y = f(x) + \frac{1}{4}$ 是奇函数,所以y = f(x)的图象关于 $\left(0, -\frac{1}{4}\right)$ 对称,且 $f(0) = -\frac{1}{4}$,

由此画出 f(x) 的图象如下图所示,直线 $y = kx - \frac{1}{4}$ 过点 $\left(0, -\frac{1}{4}\right)$,

因为
$$2^{-2} + \frac{1}{4} = \frac{1}{2}, 2(2-3)^2 = 2$$
,


所以过点 $\left(0, -\frac{1}{4}\right)$ 和点 $\left(2, \frac{1}{2}\right)$ 的直线的斜率为 $\frac{\frac{1}{2} - \left(-\frac{1}{4}\right)}{2 - 0} = \frac{3}{8}$,对应直线方程为 $y = \frac{3}{8}x - \frac{1}{4}$,

过点
$$\left(0,-\frac{1}{4}\right)$$
和点 $\left(2,2\right)$ 的直线的斜率为 $\frac{2-\left(-\frac{1}{4}\right)}{2-0}=\frac{9}{8}$, 对应直线方程为 $y=\frac{9}{8}x-\frac{1}{4}$,

由图象以及对称性可知,要使 $\sum_{m}^{i=1} f(x_i) = -\frac{7}{4}$,则需 $k \in \left[\frac{3}{8}, \frac{9}{8}\right]$,

所以B选项正确,ACD选项错误.

故选: B

【小结】关键小结:

- 1.利用图像对称性确定斜率范围:通过对函数图像对称性的利用,结合几何方法来确定直线的斜率范围,是解题的核心方法。
- 2.计算斜率和交点:通过计算直线与函数图像的交点,分析交点的个数与斜率的关系,从而准确求解 k 的取值范围.

8. B

【分析】根据函数的新定义,一次对选项中的函数的性质进行判定,即可求解.

【解析】由题意,若存在常数M>0,使 $|f(x)| \le M|x|$ 对一切实数x均成立,则称f(x)为"倍约束函数"

对于①中,函数 f(x) = 2x,存在实数 M = 3,使得 $|f(x)| \le 3|x|$,所以是成立的;

对于②中,函数 $f(x) = x^2 + 1$,因为 $\frac{|f(x)|}{|x|} = \frac{x^2 + 1}{|x|} = |x| + \frac{1}{|x|} \ge 2$,所以不存在满足条件的实数

M, 使得 $|f(x)| \le M|x|$, 所以不是"倍约束函数";

对于③中,函数 $f(x) = \sin x + \cos x = \sqrt{2} \sin(x + \frac{\pi}{4})$,其中 $\left| f(0) \right| > M\left| 0 \right|$,所以不是"倍约束函数";

对于(4)中,函数f(x)是定义在R上的奇函数,且对一切 x_1,x_2 均有

 $|f(x_1)-f(x_2)| \le 2|x_1-x_2|$, 所以必有 $|f(x)| \le 2|x|$, 所以是"倍约束函数".

故选: B.

【小结】本题主要考查了函数的新定义,以及基本初等函数的图象与性质的应用,其中解答中熟记函数的图象与性质,结合函数的新定义,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力.

9. AC

【分析】利用根式的性质、根式与指数幂的互化以及指数幂的运算逐项判断即可.

【解析】对于 A 选项,
$$2^{-1} = \frac{1}{2}$$
, A 对;

对于 B 选项, $\sqrt{a^2} = |a|$, B 错;

对于 C 选项,
$$\sqrt[3]{8^2} = 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^2 = 4$$
, C 对;

对于 D 选项,
$$(-a)^2 \cdot (-a)^3 = (-a)^5$$
, D 错.

故选: AC.

10. AC

【分析】由
$$f(x)+f(y)>\frac{xf(y)-yf(x)}{x-y}$$
,整理得到 $\frac{xf(x)-yf(y)}{x-y}>0$. 令函数

h(x) = xf(x),得到h(x)在**R**上单调递增,再逐项判断.

【解析】由
$$f(x)+f(y)>\frac{xf(y)-yf(x)}{x-y}$$
, 得 $f(x)+f(y)-\frac{xf(y)-yf(x)}{x-y}>0$,

则
$$\frac{(x-y)[f(x)+f(y)]-[xf(y)-yf(x)]}{x-y}>0$$
,整理得 $\frac{xf(x)-yf(y)}{x-y}>0$.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/827165133025010006