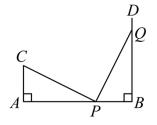
备战 2023-2024 学年八年级数学上学期期末真题分类汇编(苏科版)

专题 09 填空压轴题 (精选真题 60 道)

一、填空题

1. (2016 上·江苏镇江·八年级阶段练习)如图, AB=12cm, $CA\perp AB$ 于 A, $DB\perp AB$ 于 B,且 AC=4cm, P 点从 B 向 A 运动,速度为 1cm/s, Q 点从 B 向 D 运动,速度为 2cm/s, P、 Q 两点同时出发,则经过_____s 后, ΔCAP 与 ΔPQB 全等.



【答案】4

【分析】设运动 x 分钟后 $^{\triangle CAP}$ 与 $^{\triangle PQB}$ 全等,分两种情况:①若 $^{BP=AC}$,则 $^{x=4}$,此时 $^{AP=BQ}$, $^{\triangle CAP}$ \cong $^{\triangle PBQ}$ (SAS),②若 $^{BP=AP}$,则 $^{12-x=x}$,得出 $^{x=6}$, $^{BQ=12}$ (cm) \neq AC 即可得出结果.

【详解】解:
$${}^{\circ}CA \perp AB$$
 ${}_{\pm}{}^{A}$, ${}^{DB} \perp {}^{AB} {}_{\pm}{}^{B}$,

$$\therefore \angle A = \angle B = 90^{\circ}$$

由题意得: BP = xcm_{,BQ = 2xcm_{,则}AP = (12 - x)cm_,}

分两种情况:

①若
$$BP = AC$$
,则 $x = 4$,

$$AP = 12 - 4 = 8$$
, $BQ = 8$, $AP = BQ$,

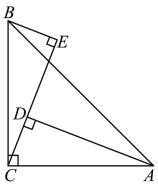
 $\therefore \triangle \ CAP \cong \triangle \ PBQ(SAS)$

②若
$$BP = AP$$
,则 $12 - x = x$,

解得: x=6,BQ=12(cm) $\neq AC$, 此时 $^{\Delta}CAP$ 与 $^{\Delta}PQB$ 不全等; 综上所述: 运动 4s 后 $^{\Delta}CAP$ 与 $^{\Delta}PQB$ 全等; 故答案为: 4. 【点睛】本题考查了三角形全等的判定方法,正确理解题意、合理分类讨论是关键.

. AGD 000 AG DG AD L GE DEL GE

2. (2022 上·江苏南通·八年级统考期末) 如图, $\angle ACB = 90^\circ$,AC = BC, $AD \perp CE$, $BE \perp CE$,垂足分别为 D,E,AD = 11,DE = 7,则BE的长为_____.



【答案】4

【分析】根据条件可以得出 $\angle E = \angle ADC = 90^\circ$, 进而得出 $\triangle CEB \cong \triangle ADC$, 就可以得出 BE = CD, AD = CE = 10, 即可求解.

【详解】解: $^{\circ BE \perp CE}$, $^{AD \perp CE}$,

$$\therefore \angle E = \angle ADC = 90^{\circ},$$

$$\therefore \angle EBC + \angle BCE = 90^{\circ}$$

$$\therefore \angle BCE + \angle ACD = 90^{\circ}$$

$$\therefore \angle EBC = \angle DCA$$

$$\begin{pmatrix}
\angle E = \angle ADC \\
\angle EBC = \angle ACD \\
BC = AC
\end{pmatrix}$$

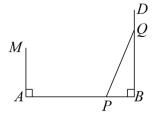
 $\therefore \triangle \ CEB \cong \triangle \ ADC(AAS)$

$$\therefore BE = CD \quad AD = CE = 11$$

$$\therefore BE = CD = CE - DE = 11 - 7 = 4$$

故答案为: 4.

【点睛】本题考查了全等三角形的判定及性质,直角三角形的性质的运用,解答时证明三角形全等 是关键.



【答案】5

【分析】分两种情况考虑: 当 $^{\triangle}APC\cong^{\triangle}BQP$ 时与当 $^{\triangle}APC\cong^{\triangle}BPQ$ 时,根据全等三角形的性质即可确定出时间.

【详解】解: 当
$$\triangle APC \cong \triangle BQP$$
时, $AP = BQ$, 即 $20 - x = 3x$,

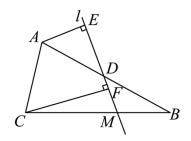
x=5解得:

此时所用时间 x 为 10, $^{AC=BQ=30>MA}$, 不合题意, 舍去;

综上,出发 5 秒后,在线段 MA 上有一点 C ,使 $^{\Delta CAP}$ 与 $^{\Delta PBQ}$ 全等. 故答案为: 5.

【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.

4. (2022 上·江苏·八年级统考期末) 如图,在 $\triangle ABC$ 中, $BC = 4\sqrt{2}$,直线 l 经过边 AB 的中点 D,与 BC 交于点 M,分别过点 A,C 作直线 l 的垂线,垂足为 E,F,则 AE + CF 的最大值为



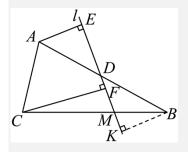
【答案】^{4√2}

【分析】根据 AAS 证明 $^{\triangle}$ AED \cong $^{\triangle}$ BKD AE = BK $^{\cap}$ $^{\cap}$

 $BK \le BM$, 所以 $BK + CF \le CM + BM$, 当 F, M, K 重合时, BK + CF = CM + BM, 从而可得

 $BK + CF \le BC$, 故可得结论

【详解】解:作 $^{BK\perp l}$ 于点 K,如图,



 $\therefore AE \perp l$

 $\therefore \angle AED = \angle BKD = 90^{\circ}$

又点 D 为 AB 的中点,

AD = BD

 $\therefore \triangle \ AED \cong \triangle \ BKD(AAS)$

AE = BK

 $\therefore AE + CF = BK + CF$

 $\mathbb{Z}^{CF\perp l}$,

 $\therefore CF \leq CM$

 $_{\forall}$: $BK \leq BM$

 $BK + CF \leq CM + BM$

当 B,K,C,F 共线时,即 F,M,K 重合时, $^{BK+CF=CM+BM}$,

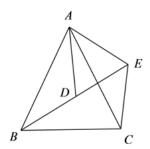
 $\therefore BK + CF \le CM + BM, \quad \text{BIJ}BK + CF \le BC$

则 $BK + CF \le 4\sqrt{2}$, 即AE + CF的最大值为 $4\sqrt{2}$

【点睛】本题主要考查了全等三角形的判定与性质,能综合运用性质进行推理是解此题的关键,综合性比较强,难度偏大.

5.(2023 上·江苏南京·八年级校联考期末)如图, \triangle ABC 和 \triangle ADE 中,

AB = AC, AD = AE, $\angle BAC = \angle DAE$, 且点 B, D, E 在同一条直线上,若 $\angle BEC = 40^{\circ}$, 则 $\angle ADE =$ 。



【答案】70

【分析】证明 $^{\triangle}ADB\cong^{\triangle}AEC$,得到 $^{AD}=AE$, $\angle ADB=\angle AEC=\angle AED+\angle BEC$,进而得到

 $\angle ADE = \angle AED$,再利用 $\angle ADB + \angle ADE = 180^{\circ}$,进行计算即可得解.

【详解】解: ∵ ∠BAC = ∠DAE,

 $\therefore \angle BAD = \angle CAE$

abla: AB = AC, AD = AE,

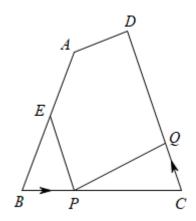
 $\triangle ADB \cong \triangle AEC(SAS)$

 $AD = AE, \angle ADB = \angle AEC$

 $\angle ADE = \angle AED$

【点睛】本题考查全等三角形的判定和性质. 熟练掌握全等三角形的判定方法,证明三角形全等, 是解题的关键.

6. (2019 上·江苏无锡·八年级校考阶段练习)如图,已知四边形 ABCD 中, $^{AB}=12$ 厘米, $^{BC}=8$ 厘米, $^{CD}=14$ 厘米, $^{ZB}=2C$,点 E 为线段 AB 的中点. 如果点 P 在线段 BC 上以 3 厘米/秒的速度由 B 点向 C 点运动,同时,点 Q 在线段 CD 上由 C 点向 D 点运动。当点 Q 的运动速度为______ 厘米/秒时,能够使 $^{\Delta}$ BPE 与以 C、P、Q 三点所构成的三角形全等.



3 【答案】³或

【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点0的运动速度.

【详解】解:设点 P 运动的时间为 t 秒,则 BP = 3t , CP = 8 - 3t , $\therefore \angle B = \angle C$.

$$∴(1) \stackrel{\text{def}}{=} BE = CP = 6, BP = CQ_{\text{pl}}, \triangle BPE \cong \triangle CQP,$$

此时
$$6=8-3t$$
,

$$t = \frac{2}{3}$$
解得

$$BP = CQ = 2,$$

 $2 \div \frac{2}{3} = 3$ 此时,点 Q 的运动速度为 厘米/秒;

②当
$$BE = CQ = 6$$
, $BP = CP$ 时, $\triangle BPE \cong \triangle CPQ$,

此时,
$$3t = 8 - 3t$$
,

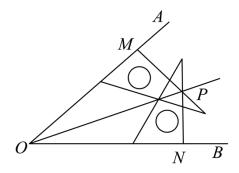
$$t = \frac{4}{3},$$
解得

综上所述,点Q的运动速度为3 厘米/秒或 厘米/秒时,能够使 与以C、D、Q 三点所构成的三角形全等.

数答案为: ⁹/₂

【点睛】本题考查了全等三角形的性质和判定的应用.解决问题的关键是掌握全等三角形的对应边相等.

7. (2019 下·江苏南通·七年级南通田家炳中学校考期末)如图,在 $\angle AOB$ 的两边上,分别取 OM=ON,再分别过点 M、N 作 OA、OB 的垂线,交点为 P,画射线 OP,则 OP 平分 $\angle AOB$ 的依据 是____.



【答案】

【分析】根据题意可得 $^{\triangle PMO}$ 与 $^{\triangle PNO}$ 是直角三角形,进而根据 HL 判定 Rt $^{\triangle PMO}$ \cong Rt $^{\triangle PMO}$

进而可得 $\angle POM = \angle PON$,即可求得答案

【详解】解: "PM \ OA, PN \ OB

 $\therefore \angle PMO = \angle PNO = 90^{\circ}$

 $_{\pm}$ Rt \triangle PMO $_{\pm}$ Rt \triangle PNO $_{\pm}$

 $\begin{cases} OM = ON \\ OP = OP \end{cases}$

 $\therefore Rt \triangle PMO \cong Rt \triangle PNO (HL)$

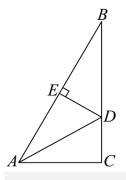
 $\therefore \angle POM = \angle PON$

"OP 平分∠AOB

故答案为: HL

【点睛】本题考查了 HL 证明三角形全等,掌握直角三角形全等的判定定理是解题的关键.

8. (2023 上·江苏南京·八年级南京大学附属中学校考期末) 如图, \triangle ABC 中, \angle ACB = 90°, AD 平分 \angle CAB , $DE \perp AB$ 于 E , \angle AB = 30°, E E , 则 E 的长等于 _____.



【答案】6

【分析】本题考查了等腰三角形的判定,角平分线的性质,含 $^{30^\circ}$ 角的直角三角形的性质等知识点,能灵活运用知识点进行推理和计算是解此题的关键。根据角平分线的性质求出 $^{DE=DC=2}$,求出 $^{20^\circ}$,求出 $^{20^\circ}$,求出 $^{20^\circ}$,求出

【详解】解: $^{\circ}AD_{\text{平分}} \angle CAB$, $DE \perp AB$, $\angle C = 90^{\circ}$,

$$\therefore DE = DC,$$

$$\because DE = 2$$

$$\therefore DC = 2$$

$$\because \angle ACB = 90^{\circ}$$
, $\angle B = 30^{\circ}$.

$$\therefore \angle BAC = 180^{\circ} - \angle ACB - \angle B = 60^{\circ}$$

$$\therefore \angle DAC = \angle BAD = \frac{1}{2} \angle BAC = 30^{\circ}$$

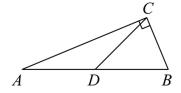
$$\therefore AD = 2DC = 4, \ \angle B = \angle BAD,$$

$$\therefore AD = DB = 4$$

$$\therefore CB = CD + DB = 2 + 4 = 6$$

故答案为: 6.

9.(2020上·江苏盐城·八年级统考期末)如图,在 $^{ ext{Rt}} \triangle ABC_{\text{中}}$, $\angle ACB = 90^{\circ}$, $CD_{\text{是斜边}} \triangle AB_{\text{L}}$ 的中线,若 $^{AB} = 4$,则 CD 的长是_____.



【答案】2

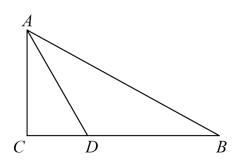
【分析】根据直角三角形斜边中线等于斜边的一半即可得到答案.

【详解】解: $\stackrel{\cdot \cdot}{c}$ Rt \triangle ABC 中, \triangle ACB = 90°, CD 是斜边 AB 上的中线, AB = 4

$$\therefore CD = \frac{1}{2}AB = 2$$

故答案为: 2.

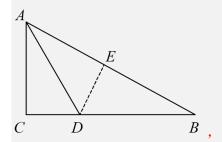
【点睛】本题考查直角三角形性质,熟记直角三角形斜边中线等于斜边的一半是解决问题的关键.



【答案】200

【分析】过 D 作 $^{DE\perp AB}$ 于点 E ,根据角平分线的性质得出 $^{DE=DC}$,再求出 DC 的长即可.

【详解】解:如图,过 D 作 $^{DE\perp AB}$ 于点 E ,



 $\therefore \angle ACB = 90^{\circ}$

 $\therefore DC \perp AC$

∵ AD ∠*CAB* 的平分线, *DE* ⊥ *AB* ,

 $\therefore DE = DC$

 $\therefore BC = 1000 \text{m}, BD = 800 \text{m},$

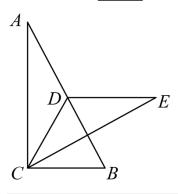
 $\therefore DC = BC - BD = 200 \text{m}.$

 $\therefore DE = DC = 200\text{m}$

"此时这个人到"的最短距离为 200m,

故答案为: 200.

【点睛】本题考查的是角平分线的性质,垂线段最短,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.



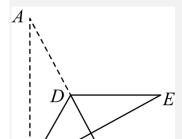
【答案】¹

【分析】如图,设 CE 交 AB 于点 O ,根据直角三角形斜边上的中线等于斜边的一半可得 $^{CD} = AD = BD$, $^{\angle A} = ^{\angle ACD}$,由翻折的性质可知 $^{\angle ACD} = ^{\angle DCE}$,再根据 $^{CE} \perp ^{AB}$,可证明 $^{\angle ACD} = ^{\angle DCE} = ^{\angle BCE} = 30^{\circ}$,可得 $^{\angle B} = 60^{\circ}$,从而得到 $^{\triangle BCD}$ 是等边三角形,由等边三角形的性质可得结论.

【详解】解:如图,设 CE 交 AB 于点 O , CE 之 AB 计点 O , CD 之 ACB = 90°, CD 是 AB 边上的中点, CD 是 AD 之 AD 是 AD 边上的中点, CD 是 AD 是

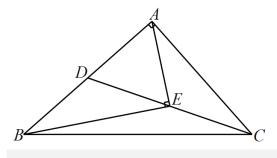
$$... \angle BCE = \angle A$$
,
 $... \angle ACD = \angle DCE = \angle BCE = 30^{\circ}$,
 $... \angle B = 90^{\circ} - \angle BCE = 90^{\circ} - 30^{\circ} = 60^{\circ}$,
 $... \angle CD = BD$,
 $... \triangle BCD$ 是等边三角形,
 $... \triangle BCD$ 是等边三角形,
 $... \triangle BCD = CB = 1$,
 $... \triangle BCD$ 的长为 1 .

故答案为: 1 .



【点睛】本题考查翻折变换,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是掌握翻折变换的性质.

12. 2022 上·江苏南京·八年级统考期末)如图,在 $^{\text{Rt}} \triangle ABC$ 中, $^{\text{L}} \triangle BAC = 90^{\circ}$, $^{\text{L}} AB = 4$, $^{\text{L}} \triangle ABC$ 的中线, $^{\text{L}} E = 6$ 的中点,连接 $^{\text{L}} \triangle BE$, $^{\text{L}} \triangle BE$,垂足为 $^{\text{L}} \triangle BC$ 的长为_____.



【答案】2^{√7}

【分析】根据垂直定义可得 $^{\angle AEB}=90^{\circ}$,利用直角三角形斜边上的中线性质可得 $^{AD}=ED=2$,,AD=DE=AE=2,从而可得 $^{\triangle}ADE$ 是等边三角形,然后利用等边三角形的性质可得 $^{\angle ADE}=60^{\circ}$,从而利用直角三角形的两个锐角互余可得 $^{\angle ACD}=30^{\circ}$,利用含 30 度角的直角三角形的性质可得 $AC=2\sqrt{3}$,最后利用勾股定理进行计算即可解答.

【详解】解:
$$:^{AE \perp BE}$$
, $\angle AEB = 90^{\circ}$

$$:CD_{\pm} \triangle ABC$$
的中线, $AB = 4$,

$$ED = \frac{1}{2}AB = 2 \quad AD = \frac{1}{2}AB = 2$$

$$AE = DE = 2$$

$$AD = DE = AE = 2,$$

$$\angle ADE = 60^{\circ}$$

$$\angle ACD = 90^{\circ} - \angle ADC = 30^{\circ}$$

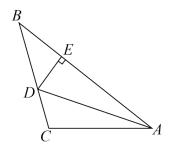
$$AC = \sqrt{3}AD = 2\sqrt{3}$$

$$BC = \sqrt{AB^2 + AC^2} = \sqrt{4^2 + (2\sqrt{3})^2} = 2\sqrt{7}$$

故答案为: 2√7.

【点睛】本题考查了直角三角形斜边上的中线,勾股定理,熟练掌握直角三角形斜边上的中线性质 是解题的关键.

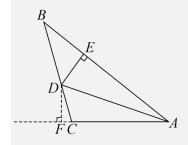
13.(2023 上·江苏徐州·八年级统考期末)如图,在 $^{\Delta}$ ABC 中, AD 平分 $^{\Delta}$ BAC , DE $^{\perp}$ AB $^{\perp}$ AB $^{\perp}$ $^{\perp}$



【答案】5

【分析】过点 D 作 $DF \perp AC$, 交 AC 的延长线于点 F ,先利用角平分线的性质可得 DE = DF = 2 , 然后利用三角形的面积公式,进行计算即可解答.

【详解】解:过点D作 $^{DF \perp AC}$,交 AC 的延长线于点 $_F$,



 $AD_{\text{平分}} \angle BAC$, $DE \perp AB$, $DF \perp AC$, DE = 2,

$$DE = DF = 2,$$

$$AC = 5$$
,

∴
$$ACD_{\overline{\text{m}}} = \frac{1}{2}AC \bullet DF$$

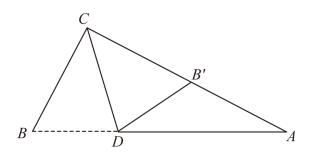
$$=\frac{1}{2}\times5\times2$$

= 5

故答案为: **5**

【点睛】本题考查了角平分线的性质,三角形的面积,根据题目的已知条件并结合图形添加适当的 辅助线是解题的关键.

14. (2023 上·江苏淮安·八年级统考期末)如图,在 $^{\triangle}$ ABC 中, $^{\angle}$ ACB = 90°, D E AB 上,将 $^{\triangle}$ ABC 沿 CD 折叠,点 B 落在 AC 边上的点 B 处,若 $^{\angle}$ A = 35°,则 $^{\angle}$ ADB 的度数为______。



【答案】

【分析】根据题意,可得 $^{\triangle ABC}$ 是直角三角形, $^{\angle B}$ 的度数,根据折叠可知, $^{\angle CB'D}=^{\angle B}$,再根据 $^{\angle CB'D}$ 是 $^{\triangle AB'D}$ 的外角,由外角的性质即可求解.

【详解】解: 在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $\angle A = 35^{\circ}$,

 $\triangle ABC$ 是直角三角形,且 $\triangle B = 90^{\circ} - 35^{\circ} = 55^{\circ}$,

根据折叠, $\angle CB'D = \angle B = 55^{\circ}$,

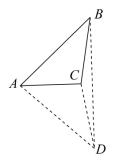
 $.. \angle CB'D$ 是 $\triangle AB'D$ 的外角,即 $\angle CB'D = \angle A + \angle ADB'$,

 $\therefore \angle ADB' = \angle CB'D - \angle A = 55^{\circ} - 35^{\circ} = 20^{\circ},$

故答案为: **20**

【点睛】本题主要考查直角三角形,三角形的外角知识的综合,掌握直角三角形的性质,折叠的性质,三角形外角的性质的知识是解题的关键.

15. (2022 上·江苏南京·八年级统考期末)如图,在三角形纸片 ABC 中, $^{AC=BC}$,把 $^{\Delta}$ ABC 沿着 AC 翻折,使点 BD 落在点 D 处,连接 BD . 如果 $^{\Delta}$ BAC = 40°,那么 $^{\Delta}$ 的度数为 _____°.



【答案】10

AC=BC, $\angle BAC=40^\circ$,根据等边对等角的性质,即可求得 的度数,又由折叠的性

质,求得 LABD 的度数,继而求得 的度数.

【详解】解: AC = BC, $\angle BAC = 40^{\circ}$,

..∠*ABC*=∠*BAC*=40°

由折叠的性质可得: ∠CAD=∠BAC=40°, AB=AD

 $\angle BAD = \angle CAD + \angle BAC = 80^{\circ}$

 $\angle ABD = \frac{1}{2} (180^{\circ} - \angle BAD) = 50^{\circ}$ \therefore

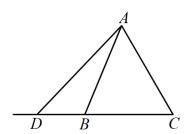
 $\angle CBD = \angle ABD - \angle ABC = 10^{\circ}$

故答案为: 10

【点睛】此题考查了折叠的性质与等腰三角形的性质. 此题注意折叠中的对应关系,注意数形结合思想的应用.

16. (2023 上·江苏南京·八年级统考期末) 如图,在 $^{\Delta}$ ABC 中, ZC = 60°, AC = 5, BC = 4,点 D

CB CB $AD-\frac{1}{2}BD$ 为 延长线上一点. 当点 D 在 延长线上运动时, 的最小值为____.



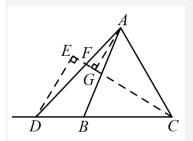
2 【答案】²

【分析】作 CE 平分 $^{\angle ACB}$,交 AD 于点 $_F$,过点 $_D$ 作 $^{DE\perp CF}$ 交 CF 于点 $_E$,根据含 30 度角的直角三角

 $DE = \frac{1}{2}BD + 2$ 形性质及线段的和差得出 ,过点 A 作 $AG \perp EC$ 于点 G,根据斜边大于垂边可知

 $AD-\frac{1}{2}BD\geq 2+AG$, 再次根据根据含 30 度角的直角三角形性质求出 $^{2+AG}$ 的值,即可得出答案.

【详解】解:作 CE 平分 $^{\angle ACB}$,交 AD 于点 $_F$,过点 $_D$ 作 $^{DE\perp CF}$ 交 CF 于点 $_E$



∴在
$$Rt \triangle CDE$$
中, $\angle E = 90^{\circ}$,

$$\therefore \angle ECD = 30^{\circ}$$

$$\therefore DE = \frac{1}{2}CD = \frac{1}{2}(BD + BC) = \frac{1}{2}(BD + 4) = \frac{1}{2}BD + 2$$

过点
$$_A$$
作 $^{AG} \perp EC$ 于点 $_G$

$$\therefore AD - DE \ge AD - DF = AF \ge AG$$

$$\therefore AD - \left(\frac{1}{2}BD + 2\right) \ge AG$$

$$\therefore AD - \frac{1}{2}BD \ge 2 + AG$$

在Rt
$$\triangle AGC$$
中, $\angle AGC = 90^{\circ}$, $\angle ACG = \frac{1}{2} \angle ACB = 30^{\circ}$

$$\therefore AG = \frac{1}{2}AC = \frac{5}{2}$$

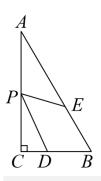
$$\therefore 2 + AG = 2 + \frac{5}{2} = \frac{9}{2}$$

$$\therefore AD - \frac{1}{2}BD \ge \frac{9}{2}$$

【点睛】本题考查了含 30 度角的直角三角形的性质、线段的和差,根据已知条件作出合适的辅助 线是解题的关键.

17.(2023 上·江苏连云港·八年级统考期末)如图,在中 $^{R} \triangle ABC$, $^{Z}C=90^{\circ}$, $^{Z}B=60^{\circ}$,点 ^{D}C

$$BD=4$$
 , P E AC AB AB $DP+EP$ 的值最小时, $BE=5$, M M 的长为____.



【答案】

【分析】根据动点的运动,当点 D 、 P 、 E (E 关于 AC 的对称点)三点共线且 $^{DE'\perp AB'}$ 于点 E 时,

DP + EP = DP + PE' = DE'的值最小,再根据等边三角形的性质,即可求出答案.

【详解】如图所示,以 AC 为对称轴作 $^{\triangle AB'C}$, E 的对称点为 E ;

$$DP + EP = DP + PE'$$

当D、P、E 三点共线且DE' LAB 时, DP + EP = DP + PE' = DE 的值最小,

$$DE' \perp AB'$$
, $\angle B = \angle B' = 60^{\circ}$, $BE = B'E' = 5$,

$$B'D = 2B'E' = 10$$

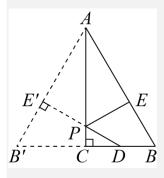
$$B'B = B'D + BD = 14$$

$$\therefore \angle B = \angle B' = 60^{\circ}$$

∴^{△ AB'B}是等边三角形,

$$AB = B'B = 14$$

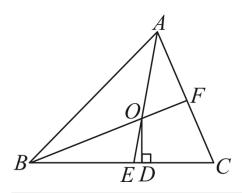
故答案为14



【点睛】本题考查轴对称最短路径问题,等边三角形和直角三角形的知识,解题的关键是掌握轴对

称最短路径问题,等边三角形的性质和直角三角形中,^{30°} 所对的直角边是斜边的一半.

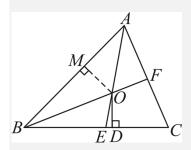
18. (2023 上·江苏扬州·八年级统考期末)如图,在 $^{\triangle}$ ABC 中, $^{\angle}$ BAC 和 $^{\angle}$ ABC 的平分线 AE , BF 相交 于点 O , AE 交 BC 于 E , BF 交 AC 于 F , 过点 O 作 OD $^{\perp}$ BC 于 D , 若 AB = 8 , OD = 1 , 则 $^{\triangle}$ AOB 的面积为



【答案】4

【分析】根据角平分线的性质得到OD = OM = 1, 再利用三角形面积公式即可求解.

【详解】解:如图,作 $OM \perp AB$ 于M,



 $BF_{\text{\tiny{\tiny{\tiny{\text{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\tiny{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\tinx{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tinx{\tiny{\tinx{\tiny{\tiin\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tin$

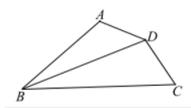
$$\dot{O}D = OM = 1$$

$$\triangle AOB$$
 的面积为 $\frac{1}{2}AB \times OM = \frac{1}{2} \times 8 \times 1 = 4$.

故答案为: 4.

【点睛】本题考查了角平分线的性质,结合图形利用角平分线的性质是解题的关键.

19.(2022 上·江苏·八年级统考期末)如图,四边形 ABCD 中, $^{\angle A}$ = 120°, $^{\angle C}$ = 60°。 若将四边形 ABCD 沿 BD 折叠后,顶点 A 恰好落在边 BC 上的点 E 处(E 与 C 不重合),则 $^{\angle CDE}$ 的度数为_____。



【答案】 60° 【60度

【分析】根据对称的性质得到 BD 垂直平分 AE ,则有 $^{AD}=ED$, $^{AB}=EB$,证明

 \triangle *ABD* \cong \triangle *EBD*(SSS), 得到 \angle *BED* = \angle *BAD* = 120°, 再利用三角形外角的性质可得结果.

【详解】解: $::A \cap E$ 关于 BD 对称,

∴^{BD}垂直平分^{AE},

AD = ED, AB = EB,

在[△]ABD_和△EBD_中,

(AD = ED)

AB = EB

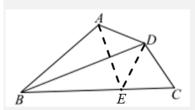
(BD = BD)

 $\triangle ABD \cong \triangle EBD(SSS)$

 $\angle BED = \angle BAD = 120^{\circ}$

 $\angle CDE = \angle BED - \angle C = 60^{\circ}$

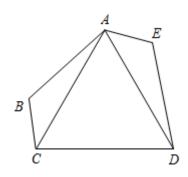
故答案为: 60°



【点睛】本题考查了翻折变换,全等三角形的判定和性质,垂直平分线的性质,外角的性质,掌握 折叠的性质是本题的关键.

20. (2023 上·江苏扬州·八年级统考期末) 如图, \triangle ACD 是等边三角形,若 AB = DE = 5 , BC = AE ,

$$\angle E = 116^{\circ}, \quad \square \angle BAE =$$



【答案】

【分析】先证明 $^{\triangle ABC}\cong^{\triangle DEA}$,得到 $^{\angle BAC}=^{\angle ADE}$,再根据三角形内角和得到所求角中两角的和

 $\angle BAC + \angle DAE$,最后与等边三角形内角 $\angle CAD$ 相加就得到结果.

 $\therefore AC = AD \quad \angle CAD = 60^{\circ}$

在[△]ABC_与△DEA</sup>中,

(AB = DE)

BC = AE

AC = AD

 $.. \triangle \ ABC \cong \triangle \ DEA$

 $\therefore \angle BAC = \angle ADE$

 $\therefore \angle BAC + \angle DAE = \angle ADE + \angle DAE = 180^{\circ} - 116^{\circ} = 64^{\circ}$

 $\therefore \angle BAE = \angle BAC + \angle DAE + \angle CAD = 60^{\circ} + 64^{\circ} = 124^{\circ}$

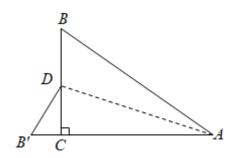
故答案为: 124

【点睛】本题考查等边三角形的性质,全等三角形的判定和性质,三角形内角和的概念.解题的关键在于熟练掌握这些相关知识点.

21.(2022 上·江苏苏州·八年级统考期末)如图,三角形纸片三角形纸片 ABC 中, $^{\angle ACB}$ = 90°,

BC=3 , AB=5 . BC 边上一点,连接 AD , 把 ABD 沿 AD 翻折,点 B 恰好落在 AC 延长线上的点 B

处,则^{CD}的的长为 _____.

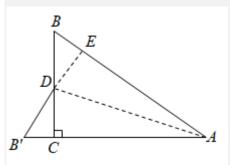


4 【答案】³

【分析】由翻折可得 AD 为 $^{\angle BAC}$ 的角平分线,由 $^{S_{\triangle ABD}}$ = $^{AB}_{AC}$ = $^{BD}_{CD}$ 求解.

【详解】由翻折可得 AD 为 $^{\angle BAC}$ 的角平分线,

作 $DE \perp AB$ 于点E,则DE = DC,



在 $Rt \triangle ABC$ 中,由勾股定理得 $AC = \sqrt{AB^2 - BC^2} = \sqrt{5^2 - 3^2} = 4$,

$$: S_{\triangle ABD} = \frac{1}{2}AB \cdot DE, \quad S_{\triangle ACD} = \frac{1}{2}AC \cdot CD,$$

$$\therefore \frac{S_{\triangle ABD}}{S_{\triangle ACD}} = \frac{\frac{1}{2}AB \cdot DE}{\frac{1}{2}AC \cdot CD} = \frac{AB}{AC} = \frac{5}{4},$$

$$\mathbf{X} \cdot \frac{\mathbf{S}_{\triangle ABD}}{\mathbf{S}_{\triangle ACD}} = \frac{\mathbf{BD}}{\mathbf{CD}},$$

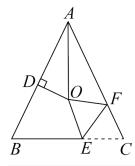
$$\therefore \frac{BD}{CD} = \frac{5}{4}$$

$$\therefore CD = \frac{4}{9}BC = \frac{4}{9} \times 3 = \frac{4}{3}$$

数答案为: ⁴

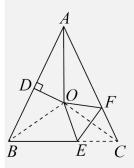
【点睛】本题考查翻折问题,解题关键是掌握角平分线的性质,通过添加辅助线求解.

22. (2022 上·江苏无锡·八年级江苏省锡山高级中学实验学校校考期末)如图, \triangle ABC 中, AB = AC, $\angle BAC = 50^{\circ}$, $\angle BAC$ 的平分线与 AB 的垂直平分线交于点 O,将 $\angle C$ 沿 EF (E 在 BC 上,F 在 AC 上)折叠,点 C 与点 O 恰好重合,则 $\angle OEC$ 为____度.



【答案】

【分析】连接 OB 、 OC ,根据角平分线的定义求出 $^{\angle BAO}$,根据等腰三角形两底角相等求出 $^{\angle ABC}$,再根据线段垂直平分线上的点到线段两端点的距离相等可得 $^{OA=OB}$,根据等边对等角可得 $^{\angle ABO=\angle BAO}$,再求出 $^{\angle OBC}$,证明 $^{OB=OC}$,再根据等边对等角求出 $^{\angle OCB=\angle OBC}$,根据翻折的性质可得 $^{OE=CE}$,然后根据等边对等角求出 $^{\angle COE}$,再利用三角形的内角和定理列式计算即可.



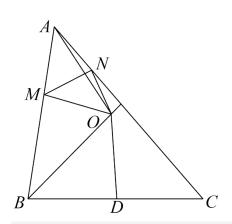
$$\therefore \angle BAO = \frac{1}{2} \angle BAC = \frac{1}{2} \times 50^{\circ} = 25^{\circ}$$

```
\nabla · AB = AC
\therefore \angle ABC = \frac{1}{2}(180^{\circ} - \angle BAC) = \frac{1}{2}(180^{\circ} - 50^{\circ}) = 65^{\circ}
·· DO _AB 的垂直平分线,
\therefore OA = OB
\therefore \angle ABO = \angle BAO = 25^{\circ}
\therefore \angle OBC = \angle ABC - \angle ABO = 65^{\circ} - 25^{\circ} = 40^{\circ}
·· AO<sub>为</sub>∠BAC<sub>的平分线</sub>, AB = AC<sub>,</sub>
∴ O BC 的垂直平分线上,
: OB = OC
\therefore \angle OCB = \angle OBC = 40^{\circ}
"将\angle C" EF(E_{ABC}, F_{AC}, E) 折叠,点C与点 恰好重合,
:: OE = CE
\therefore \angle COE = \angle OCB = 40^{\circ}

\pm \Delta OCE
 中, 
\pm OEC = 180^{\circ} - \angle COE - \angle OCB = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}

故答案为: 100
 【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一
的性质,等边对等角的性质,以及翻折变换的性质,三角形内角和定理等等,熟知相关知识是解题
的关键.
```

23. (2022 上·江苏扬州·八年级统考期末)如图,在 $^{\triangle}$ ABC 中, AB = BC , $^{\angle}$ ABC = 80 ° , $^{\angle}$ ABC 的平分线与 BC 的垂直平分线相交于点 O ,点 M 、 N 分别在 AB 、 AC 上,点 A 沿 MN 折叠后与点 O 重合,则 $^{\angle}$ ONC =



【答案】 20°/20度

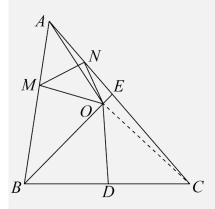
【分析】连接OC, 设 $\angle ABC$ 的平分线与AC交于点E, 求出 $\angle BAC = \angle BCA = 50^{\circ}$,

 $\angle ABE = \angle CBE = 40^{\circ}$,根据OD 垂直平分BC ,得到OB = OC ,即 $\angle OBC = \angle OCB = 40^{\circ}$,进一步可得

 $\angle OCE = 50^{\circ} - 40^{\circ} = 10^{\circ}$,利用 BE 垂直平分 AC ,得到 $\angle OAC = \angle OCA = 10^{\circ}$,由折叠的性质可知:

AN = ON, 所以 $\angle NAO = \angle NOA = 10^{\circ}$, 进一步可得 $\angle ONC = \angle NAO + \angle NOA = 20^{\circ}$.

【详解】解:连接 OC ,设 $^{\angle ABC}$ 的平分线与 AC 交于点 $_E$,如图



$$AB = BC$$
, $\angle ABC = 80^{\circ}$,

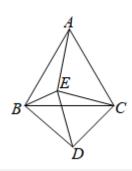
$$\angle BAC = \angle BCA = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}$$

$$\therefore$$

$$\angle ABE = \angle CBE = 40^{\circ}$$
,

24. (2022 上·江苏宿迁·八年级校考期末)如图, $^{\triangle ABC}$ 和 $^{\triangle CDE}$ 都是等边三角形,且 $^{\angle EBD=66^{\circ}}$,则 $^{\angle AEB=}$

三角形外角的性质,解题的关键是熟练掌握以上相关知识点,并能够综合运用.



【答案】 126° /126度

【分析】根据等边三角形性质得出^{AC=BC},CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,_{求出}

 $\angle ACE = \angle BCD$, $_{ii}$ $\triangle ACE \cong \triangle BCD$, 根据全等三角形的性质得出 $\angle CAE = \angle CBD$, 求出

∠ABE+∠BAE=54°,根据三角形内角和定理求出即可

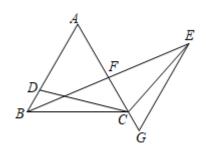
【详解】 ··△ABC 和CDE 都是等边三角形,

 $\therefore AC = BC$, CE = CD, $\angle BAC = 60^{\circ}$, $\angle ACB = \angle ECD = 60^{\circ}$,

```
\therefore \angle ACB - \angle ECB = \angle ECD - \angle ECB
∴∠ACE=∠BCD
在<sup>△ACE</sup>和<sup>△BCD</sup>中,
 \angle ACE = \angle BCD
CE = CD
∴△ACE≌△BCD (SAS)
\therefore \angle CAE = \angle CBD
::∠EBD=66°
\therefore66°-\angle EBC=60°-\angle BAE
:66^{\circ} - (60^{\circ} - \angle ABE) = 60^{\circ} - \angle BAE
∴∠ABE+∠BAE=54°
\therefore \angle AEB = 180^{\circ} - (\angle ABE + \angle BAE) = 126^{\circ}
故答案为: 126°
 【点睛】本题考查了全等三角形的性质和判定,三角形内角和定理,等边三角形的性质的应用,能
求出\angle CAE = \angle CBD 是解此题的关键,难度适中.
```

25. (2022 上:江苏南通·八年级统考期末)如图, $\triangle ABC$ 是等边三角形,点 D 在 AB 上,AD=3BD,

 $\angle ACE = \angle ADC$,CE = CD. G 是 AC 延长线上一点, $EG \parallel AB$. 连接 BE 交 AC 于点 F,则 \overline{FC} 的值为____.



```
5
【答案】<sup>3</sup>/3
 【分析】由"AAS"可证\triangle BCD \cong \triangle GEC ,设 BD=CG=x,BC=GE=AB,由"AAS"可证\triangle ABF \cong \triangle GEF
AF = FG = \frac{5}{2}x 可得 ,求比值即可.
 【详解】解: ::AD=3BD,
∴设 BD=x,则 AD=3x,
AB = 4x,
:^{\triangle}ABC 是等边三角形,
AB = AC = BC = 4x, \angle A = \angle ABC = 60^{\circ},
..^{EG \parallel AB},
\therefore \angle A = \angle G = 60^{\circ},
\therefore \angle ABC = \angle G = 60^{\circ},
\therefore \angle ACE = \angle ADC,
\therefore \angle BDC = \angle GCE,
\angle BDC = \angle GCE
: \overset{\triangle}{BCD} \cong \overset{\triangle}{GEC} (AAS),
:BD=GC=x, BC=GE=AB,
AG = AC + CG = 5x,
在^{\Delta}ABF 和^{\Delta}GEF 中,
: ^{\triangle}_{ABF} \cong ^{\triangle}_{GEF} (AAS),
```

$$\therefore AF = FG = \frac{5}{2}x$$

$$\therefore FC = \frac{3}{2}x,$$

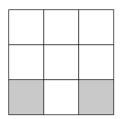
$$\frac{FG}{FC} = \frac{5}{3}$$

故本题答案为: $\frac{5}{3}$

【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行线的性质等知识,证明

$\triangle_{ABF} \cong \triangle_{GEF}$ 是解题的关键.

26. (2021 上·江苏镇江·八年级校联考阶段练习) 如图,在 3×3 的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形构成一个轴对称图形,那么涂法共有_____种.



【答案】5

【分析】根据轴对称图形的定义,即可求解.

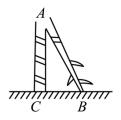
【详解】解:如图所示:所标数字之处都可以构成轴对称图形,共有5种情形,

4	3	5
	2	
	1	

故答案为: 5.

【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.

27. (2021上·江苏常州·八年级统考期末)《九章算术》中有一个"折竹抵地"问题:今有竹高九尺,



【答案】4尺

【分析】本题主要考查了勾股定理的实际应用,设 $^{AC}=x$ 尺,则 $^{AB}=(9-x)$ 尺,利用勾股定理建立方程 $^{x^2+3^2}=(9-x)^2$,解方程即可得到答案.

【详解】解:设
$$^{AC} = x$$
尺,则 $^{AB} = (9-x)$ 尺,

由题意得, ∠*ACB* = 90°,

在 $Rt \triangle ABC$ 中,由勾股定理得 $AC^2 + BC^2 = AB^2$,

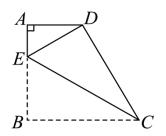
$$x^2 + 3^2 = (9 - x)^2$$

解得 $^{x=4}$,

$$∴$$
 $AC = 4$ $∀$,

故答案为: 4尺.

28. (2023 上·江苏南京·八年级期末) 如图,在四边形 ABCD 中, $^{\angle A}$ = 90°, AB = 4cm, AD = 2cm, BC = CD , E 是 AB 上一点。若沿 CE 折叠,恰好 B , D 两点重合,则 $^{\underline{DE}}$ =



【答案】^{2.5cm}

【分析】本题考查折叠问题,解题的关键是掌握折叠的性质,熟练应用勾股定理列方程求解.由折

叠性质可得 $^{BE=DE}$,表示出 AE ,在直角三角形中,用勾股定理求解即可.

【详解】解: $:^{CD}$ 沿 CE 折叠后, B, D 两点恰好重合,

利用折叠性质可设BE = DE = x

$$\int AE = 4 - x$$

 $E(\mathbf{R}, \mathbf{R}, \mathbf{A}, \mathbf{D}, \mathbf{E})$ 在 中,由勾股定理可得

$$AD^2 + AE^2 = DE^2$$

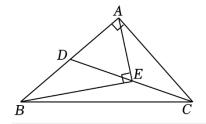
$$\sin^4 + (4 - x)^2 = x^2$$

mathanker x = 2.5,

 $DE = 2.5 \,\mathrm{cm}$

故答案为: 2.5cm

29. (2023 上·江苏南京·八年级期末)如图,在 $^{Rt} \triangle ABC$ 中, $^{L} \triangle BAC = 90^{\circ} AB = 4$, $^{L} \triangle ABC$ 的 的中线, $^{L} \triangle BE$ 的,



【答案】2√7

【分析】本题考查了直角三角形斜边上的中线定理,勾股定理, 根据中线定理解题即可.

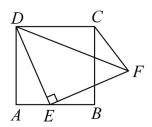
【详解】解: · AE L BE,

$$\therefore \angle AEB = 90^{\circ}$$

∵点 D ∉ AB的中点,AB = 4,

$$ED = AD = DB = \frac{1}{2}AB = 2$$

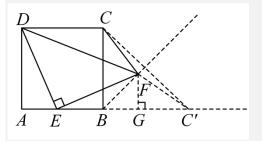
30. (2023 上·江苏淮安·八年级校考期末)如图,已知正方形 ABCD 的边长为 1 ,点 E 是 AB 边上一动点,连接 ED ,将 ED 绕点 E 顺时针旋转 90 °到 EF ,连接 DF , CF ,则 DF + CF 的最小值是



【答案】 √5

【分析】连接 BF ,过点 F 作 FG L AB AB 延长线于点 G ,通过证明 $^{\triangle}$ AED $^{\triangle}$ $^{\triangle}$ E , 确定 F 点在 BF 的 射线上运动,作点 C 关于 BF 的对称点 C ,由三角形全等得到 $^{\angle CBF}$ E E ,从而确定 C 点在 AB 的延长线上,当 D 、 F 、 C 三点共线时, DF E E

【详解】解:连接 BF ,过点 $_F$ 作 $^{FG\perp AB}$ 交 AB 延长线于点 G ,



"将ED。 将ED。 操点E, 顺时针旋转 90° 到EF,

```
\therefore \angle EDA = \angle FEG
在△AED<sub>和</sub>△GFE<sub>中</sub>,
\begin{cases} \angle A = \angle FGE \\ \angle EDA = \angle FEG \\ DE = EF \end{cases},
\therefore \triangle AED \cong \triangle GFE(AAS)
\therefore FG = AE, AD = EG
AD = AB
AB = EG
AE = BG
BG = FG
∴F<sub>点在</sub>BF<sub>的射线上运动</sub>,
作点<sup>C</sup>关于<sup>BF</sup>的对称点<sup>C</sup>,
: EG = DA, FG = AE
\therefore AE = BG
BG = FG
\therefore \angle FBG = 45^{\circ},
\therefore \angle CBF = 45^{\circ}
∴ BF<sub>是</sub>∠CBC 的角平分线,
即<sup>F</sup>点在<sup>∠CBC</sup>的角平分线上运动,
∴ C 点在AB 的延长线上,
当^{D \times F \times C}三点共线时,^{DF + CF = DC}最小,
_{\pm}Rt \triangle ADC 中, AD = 1, AC' = 2
```

$$\therefore DC' = \sqrt{AD^2 + C'A^2} = \sqrt{5}$$

$$\therefore DF + CF$$
 的最小值为 $\sqrt{5}$,

故答案为: √5.

【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,轴对称求最短路径; 能够将线段的和通过轴对称转化为共线线段是解题的关键.

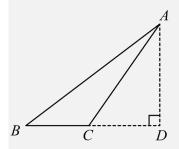
31. (2022 上·江苏南京·八年级统考期末)如图,在 \triangle ABC ,AB=20 ,AC=15 ,BC=7 ,点 A 到 BC 的距离是



【答案】12

【分析】过点 A 作 $AD \perp BC$ 变 BC 的延长线于点 D,由勾股定理得出 $AB^2 - BD^2 = AD^2 = AC^2 - CD^2$ 代入数据得出 CD 的长,再根据勾股定理求解即可.

【详解】解:如图,过点A作 C D 的延长线于点D,



在**Rt △ ABD**和**Rt △ ACD**中,由勾股定理得,

$$AB^2 - BD^2 = AD^2 = AC^2 - CD^2$$
, $BIJ 20^2 - (7 + CD)^2 = 15^2 - CD^2$,

K CD = 9,

$$AD = \sqrt{AC^2 - CD^2} = 12$$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/82801013100 0007006