[eture 5: Jordan Canonical Form

Matrix Analysis



The defective matrices are not diagonalizable,
For example

A=

But these defective matrices can be similar
to some upper triangular matrices whose form
1s very close to a diagonal matrix. This form
is Jordan canonical form (or Jordan normal
form ).

Jordan canonical form is very useful to
understand the matrix structures and matrix
functions.



Before introduce Jordan canonical form, we need to
understand the concepts of minimal polynomials and
invariant subspaces.

5.1 Minimal Polynomials

Theorem 5.1.1. Let A € M,. Then there exists a unique
monic annihilate polynomial q ,(x) of minimum degree. If
p(x) is any annihilate polynomial, then q ,(x) divides p(x).
[remarks: if p(A)=0, then p(x) is called an annihilate
polynomial of A. “monic” means the highest order
coefficient of a polynomial is “1 "]

Proof. For matrix A, the characteristic polynomial p ,(x) 1s
an annthilate polynomial, that 1s p ,(4) = 0, assume g ,(x) 1s
a minimal degree annihilate polynomial which 1s monic,
then g ,(4)=0. by the Euclidean algorithm



pa(z) = qa(x)h(z) +r(z)

where deg r(z) < deg ga(x). We know

pa(A) = qga(A)h(A) +r(A).
Hence r(4) = 0, and by the minimality assumption »(x) = 0.
Thus g ,(x) divides p ,(x) and also any polynomial for which
p(A) = 0.

To establish that g ,(x) 1s unique, suppose g(x) 1s another
monic polynomial of the same degree for which g(4) = 0.
Then

r(z) =q(x) — qa(x)
1s a polynomial of degree less than g ,(x) for which r(4) =
q(4) —q ,(4) = 0. This cannot be true.




Definition 5.1.1. The polynomial g ,(x) in the theorem
above 1s called the minimal polynomial.

Corollary 5.1.1. IfA,B € M, are similar, then they
have the same minimal polynomial.

Proof. let B=S"'AS, then
q,(B)=q,(S"AS)=5"q,(4)S=0

If there 1s @ minimal polynomial for B of

smaller degree, say gz(x), then gz(A4) = 0 by the
same argument. This contradicts the minimality

of g ,(x).




Corollary 5.1.2. For the minimal polynomial q ,(x),
q,(A)=0iff Ais the eigenvalue of A.

Proof. q,(A)=0= p,(1)=¢q,(A)h(1)=0
— A 1s the eigenvalue.

A 1s the eigenvalue. = Ax = Ax(x # 0)
= 0=g,(4)x = q,(A)x
= q,1)=0
k
From Corollary 5.1.2, if p,()=]](—4)" then the
=1

minimal polynomial g ,(?) has the form

k
q,()=] -2 1<, <m,.
i=l1




5.2 Invariant subspaces

We have considered the subspaces J of C" that are
invariant under the matrix A € M_(C). This means that

AV C V.

We now consider a specific type of invariant subspace
that will lead to the so-called Jordan canonical form.

Definition 5.2.1. Let 4 € M, (C) with spectrum o(4) =
{Ai, ..., N }. the generalized eigenspace pertaining toA.
1S

W, ={ze€Cy| (A= NI)"z =0}

If the span of the eigenvectors (eigenspace) pertaining to
A 1s not equal to V. then,



there must be a positive power p and a vector x such
that (4 —2.))? x =0 but that y = (4 —A.)?~' x # 0/ Thus y
1s an eigenvector pertaining to A.. We say x 1s a
generalized eigenvector of order p.

For this reason we will call V), the space of generalized
eigenvectors pertaining to A..

Theorem 5.2.1. Generalized eigenspace V), is an
invariant subspace of A.

Proof. For Vx € Vs,
(A-A1)"x=0
= (A-A1)"Ax=A(A-A11)"x=0
= Ax eV,




5.3 The Jordan canonical Form

Definition 5.3.1. LetA € C. A Jordan block Ji(4) 1s a k

Xk upper triangular matrix of the form
o ]

0
0 |
A_

AlJordan matrix|is any matrix of the form

Ty (A1) 0
J = -

0 T (A1)

where the matrices J, ; are Jordan blocks.



Note that

0 1
J (0)= 00 =(J, (4)—Al)
k o O 1 o k
L O_
And it is nilpotent.
0 0 1 ]
O O O
k
Te(0)= O o 1|LL, J (0)=0
O

o O =



Theorem 5.31

It A e M,(C) has only one eigenvalue A, and geom(A) = 1. Then there
exists x € Cy,, such that {(A — \)"la, ... . (A — Nz, 2} is a basis of V),
and A ~ .J, where

D N
({] A1 \
J = o _ _
\0 0 ... A
Proof:
(A= A)y=0
(() X ... *\
0 0 % x

= Ul . . . . |Uy=U"TUy =0, since geom(A) = 1, so
\0 0 ... 0)
0

rank(T) =n—1. Let 2z = Uy, set z = . then solve y = U*z




For equation (A — AI)"~
[0 * ... %

= U~

Let v = Ux, then v =

Uzr = U*:
o 00
0 0
* . Uxr =
0 0 )

[0

0

\ 1/x )

that (A — X)*xz # 0, for k < n.

cand @ = U*v,

0

It’s straightforward



If {(A—=XN)""ta,....(A— M)z, 2} is not linear independent. There
exists aq..... an € C' not all zeros, such that:

a(A= X" e+ +a,z=0 (3.1)

Multiply by (A — AI)™~! on both sides, we got

a1(A=A?"2 1. fap (A= A"z =0

Since (A — AI ) = P4(A\) =0, the above equation becomes:

an(A — X" 1o =0, however, we just proved that

(A= X"tz =y #0. So a, =0.

Then multiply (A — A)"2 to equation (3.1), we get ap—1 = 0, and so
forth.

Eventually oy = ag = --- = a,, = 0, contradiction to linear dependence.
Therefore the set {(A —XI)" "1z, ..., (A — Al)x, x} is linearly

independent, and there are n vectors in the set, thus it is a basis.



Let P = ((A=X)""1a, ..., (A=Al )z, x),
= (A(A =)o, ..., A(A =AMz, Ax)
= = ((A /\I—i—/\)(A—/\I)” Lo, o (A=A (A= )a
-
(A=AD"x+AN(A=A)"" ., ..., (A=AXI)2+N(A—=\])x.
( Al
0 A
= (A= X1z, ..., (A=Al )x.x) . :
\ 0 0 A

That is equivalent to A = PJP~1

(A=A )z+Ax)

(A= AI)x+A\x)

= PJ
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