专题 9.10 平行四边形中常见的四种思想方法

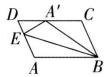
【苏科版】

考卷信息:

本套训练卷共 30 题, 题型针对性较高, 覆盖面广, 选题有深度, 可加强学生对平行四边形中常见的四种思想方法的理解!

【类型1 整体思想】

1.(2021 秋·黑龙江佳木斯·九年级统考期中)如图,平行四边形 ABCD 中,点 E 在边 AD 上,若点 A 关于 BE 的对称点A'落在 CD 上, \triangle DEA'的周长为 8, \triangle CBA'的周长为 18,则A'C的长为______.

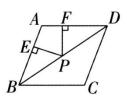


【答案】

5

【解析】由折叠的性质得,EA' = AE,BA' = AB.

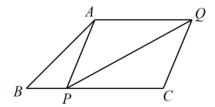
- :四边形 ABCD 是平行四边形,
- \therefore AD = BC, AB = DC.
- ::△ A'DE的周长为 8, 即DA' + DE + EA' = 8,
- ∴ DA' + DE + AE = 8, $\square DA' + AD = 8$.
- $:: \triangle A'CB$ 的周长为 18, 即A'C + BC + BA' = 18,
- ∴ A'C + AD + DC = 18, ઘ 2A'C + AD + DA' = 18.
- $\therefore 2A'C + 8 = 18,$
- ∴ A'C=5
- 2. (2022 秋·山东济宁·八年级济宁学院附属中学校考期末) 如图,菱形 ABCD 的周长为 40,面积为 80,P 是对角线 BD 上一点,分别作 P 点到直线 AB、AD 的垂线段 PE、PF,则PE + PF等于______.



【答案】

$$\therefore \frac{1}{2} \times 10(PE + PF) = 40, \quad \therefore PE + PF = 8.$$

3. (2022 春·江苏无锡·八年级统考期末)如图, $\angle ABC=45^\circ$,AB=2, $BC=2\sqrt{2}$,点 P 为 BC 上一动点, $AQ \parallel BC$, $CQ \parallel AP$,AQ 、CQ 交于点 Q,则四边形 APCQ 的形状是_____,连接 PQ,当 PQ 取得最小值时,四边形 APCQ 的周长为_____.



【答案】 平行四边形 $\sqrt{2} + \sqrt{10} # # \sqrt{10} + \sqrt{2}$

【分析】根据两组对边分别平行的四边形是平行四边形即可求解;当 PQ 是 AQ 和 BC 间距离时 PQ 取得最小值,计算四边形 APCQ 的周长即可.

【详解】解:如图,:AQ || BC, CQ || AP,

::四边形 APCQ 是平行四边形.

当 $PQ\perp BC$ 时,PQ取得最小值,

::四边形 APCO 是平行四边形,

 $\therefore AH = HC = \frac{1}{2}AC, \quad QH = PH = \frac{1}{2}PQ,$

 $\therefore \angle ABC = 45^{\circ}$, AB = 2, $BC = 2\sqrt{2}$,

AC=2, $\angle ACB=45^{\circ}$,

 $: OP \perp BC$

∴∠PHC=45°,

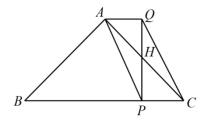
 $\therefore PH=PC=\frac{\sqrt{2}}{2},$

 $\therefore PQ = \sqrt{2}$,

$$\therefore QC = \sqrt{PC^2 + PQ^2} = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\sqrt{2}\right)^2} = \frac{\sqrt{10}}{2},$$

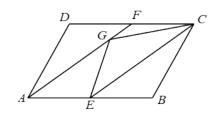
::四边形 APCQ 的周长为: $2PC+2QC=2\times\frac{\sqrt{2}}{2}+2\times\frac{\sqrt{10}}{2}=\sqrt{2}+\sqrt{10}$,

故答案为: 平行四边形; $\sqrt{2} + \sqrt{10}$.



【点睛】本题主要考查了平行四边形的性质,等腰三角形的判定,垂线段最短的性质,综合性较强.

4. (2022 春·河南南阳·八年级统考期末) 在 $\square ABCD$ 中,点 E 为 AB 边的中点,连接 CE,将 $\triangle BCE$ 沿着 CE 翻折,点 B 落在点 G 处,连接 AG 并延长,交 CD 于 F.



(1)求证: 四边形 AECF 是平行四边形;

(2)若 CF=5, $\triangle GCE$ 的周长为 20,求四边形 ABCF 的周长.

【答案】(1)见解析

(2)30

【分析】(1)根据平行四边形的性质得出 $AE \parallel FC$,根据折叠及已知条件得出AE = GE,根据等腰三角形的性质和三角形外角的性质,证明 $\angle FAE = \angle CEB$,再根据平行线的判定得出 $AF \parallel EC$,即可证明结论;

(2) 由折叠的性质得: GE=BE,GC=BC,根据 $\triangle GCE$ 的周长为 20,得出 GE+CE+GC=20,即可得出 BE+CE+BC=20,再根据平行四边形的性质求出 AF=CE,AE=CF=5,即可求出结果.

【详解】(1)证明::四边形 ABCD 是平行四边形,

 $AE \parallel FC$,

::点 E 是 AB 边的中点,

AE=BE,

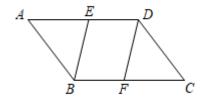
::将 $\triangle BCE$ 沿着 CE 翻折,点 B 落在点 G 处,

 $:BE=GE, \angle CEB=\angle CEG,$

AE = GE

 $\therefore \angle FAE = \angle AGE$,

- $:\angle CEB = \angle CEG = \angle BEG$, $\angle BEG = \angle FAE + \angle AGE$,
- $\therefore \angle FAE = \angle BEG$
- $\therefore \angle FAE = \angle CEB$,
- $AF \parallel EC$,
- :四边形 AECF 是平行四边形.
- (2) 解: 由折叠的性质得: GE=BE, GC=BC,
- ::△GCE 的周长为 20,
- :GE+CE+GC=20,
- :BE+CE+BC=20,
- ::四边形 AECF 是平行四边形,
- AF = CE, AE = CF = 5,
- ∴四边形 *ABCF* 的周长=*AB*+*BC*+*CF*+*AF*=*AE*+*BE*+*BC*+*CE*+*CF*=**5**+**20**+**5**=**30**.
- 【点睛】本题主要考查了平行四边形的性质和判定,三角形外角的性质,等腰三角形的性质,熟练掌握平行四边形的性质和判定,是解题的关键.
- 5. (2022 秋·江苏南京·九年级南京市第二十九中学校考开学考试) 如图,在平行四边形 ABCD 中,AD>AB,点 E、F 分别在边 AD、BC 上,且 AE=CF,连接 BE、DF.



- (1)求证: 四边形 BEDF 是平行四边形;
- (2)若平行四边形 ABCD 的周长为 26,面积为 $18\sqrt{3}$,且 $\angle A=60^\circ$,当 BE 平分 $\angle ABC$ 时,则四边形 BEDF 的周长为____.

【答案】(1)见解析

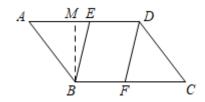
(2)18

- 【分析】(1)利用平行四边形的性质可得 $AD\parallel BC$,AD=BC,从而可得 DE=BF,然后利用平行四边形的判定方法,即可解答:
- (2) 过点 B 作 $BM \perp AD$, 垂足为 M, 根据平行四边形的周长和面积可得方程组,根据含 30 度角的直角三角

形的性质,勾股定理得出 $MB=\sqrt{3}AM=\frac{\sqrt{3}}{2}AB$,进而可得 $\begin{cases} AD+AB=13\\ AD\cdot AB=36 \end{cases}$,解方程组即可求得AD,AB,然后证明 \triangle ABE 是等边三角形,从而求出 BE 的长,进行计算即可解答.

【详解】(1)(1)证明::四边形 ABCD 是平行四边形,

- $AD \parallel BC$, AD = BC,
- ::AE=CF,
- AD-AE=BC-CF,
- ∴DE=BF,
- :.四边形 BEDF 是平行四边形;
- (2) 过点 *B* 作 *BM LAD*, 垂足为 *M*,



"平行四边形 ABCD 的周长为 26, 面积为18√3,

$$:\left\{ \begin{cases} 2(AD+AB)=26\\ AD\cdot BM=18\sqrt{3} \end{cases} \right.$$

在 $Rt\triangle ABM$ 中, $\angle A=60^{\circ}$,

$$\therefore \angle ABM = 30^{\circ}$$

$$\therefore 2AM = AB$$

$$\therefore MB = \sqrt{3}AM = \frac{\sqrt{3}}{2}AB$$

$$\therefore \begin{cases} AD + AB = 13\\ AD \cdot \frac{\sqrt{3}}{2}AB = 18\sqrt{3} \end{cases},$$

化简得:
$${AD + AB = 13 \atop AD \cdot AB = 36} ,$$

解得:
$$\begin{cases} AD = 4 \\ AB = 9 \end{cases}$$
 $\begin{cases} AD = 9 \\ AB = 4 \end{cases}$

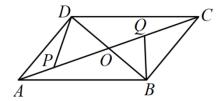
- :AD>AB,
- $\therefore AD=9$, AB=4,
- ::BE 平分∠ABC,
- $\therefore \angle ABE = \angle EBC$,
- $AD \parallel BC$,

- $\therefore \angle AEB = \angle EBC$,
- $\therefore \angle ABE = \angle AEB$,
- AE=AB=4,
- $\therefore DE = AD AE = 9 4 = 5$
- ∴∠*A*=60°,
- ∴△ABE 是等边三角形,
- $\therefore BE=AB=4$,
- ∴四边形 *BEDF* 的周长=2 (*BE+DE*) =18,

故答案为: 18.

【点睛】本题考查了平行四边形的判定与性质,等边三角形的判定与性质,熟练掌握平行四边形的判定与性质是解题的关键.

6. 2021 秋·黑龙江佳木斯·九年级统考期中)如图, $\triangle AOD$ 和 $\triangle COB$ 关于点 O 中心对称, $\angle AOD = 60^{\circ}$, $\triangle ADO = 90^{\circ}$,BD = 12,P 是 AO 上一动点,Q 是 OC 上一动点(点 P,Q 不与端点重合),且 AP = OQ. 连接 BQ,DP,则 DP + BQ 的最小值是______.



【答案】12

【分析】由中心对称的性质可得 BO=DO=6,AO=OC,可证四边形 ABCD 是平行四边形,由直角三角形的性质可得 AO=2DO=12,当 AP=OP 时,DP+BQ 的值最小,此时 P 为 OA 的中点,由直角三角形斜边上的中线性质得出 DP、BQ,即可得出结果.

【详解】解: $:: \triangle AOD \ \pi \triangle COB \$ 关于点 O 中心对称,

- BO=DO=6, AO=OC,
- ::四边形 ABCD 是平行四边形,
- *∴∠AOD*=60°, ∠*ADO*=90°,
- ∴∠*DAO*=30°,
- AO = 2DO = 12,
- :AP=OQ
- $\therefore PQ = AO = 12$,

如图,作DK||AC,使得DK=PQ=12,连接BK,

:四边形 DPOK 为平行四边形,

 $\therefore DP = KQ$, $\angle BDK = \angle BOC = \angle AOD = 60^{\circ}$,

此时 DP+BQ=KQ+BQ=BK 的值最小,

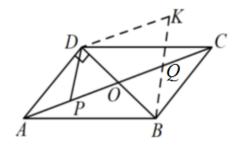
:DK=PQ=BD=12,

∴ △BDK 是等边三角形,

 $\therefore BK=DB=12$,

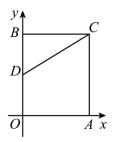
::DP+BQ 的最小值为 12.

故答案为: 12.



【点睛】本题主要考查了平行四边形的判定和性质,直角三角形的性质,等边三角形的判定和性质,熟练掌握平行四边形的判定和性质,直角三角形的性质,等边三角形的判定和性质是解题的关键.

7. (2023 春·全国·八年级期末) 在平面直角坐标系中,矩形 OACB 的顶点 O 在坐标原点,顶点 A、B 分别在 x 轴、y 轴的正半轴上,A(3,0),B(0,4),D 为边 OB 的中点.



(1) 若 E 为边 OA 上的一个动点,求 \triangle CDE的周长最小值;

(2)若 $E \times F$ 为边 OA 上的两个动点,且 EF=1,当四边形 CDEF 的周长最小时,求点 $E \times F$ 的坐标.

【答案】 $(1)\sqrt{13}+3\sqrt{5}$

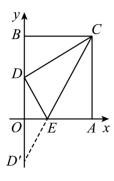
 $(2)(\frac{2}{3},0), (\frac{5}{3},0)$

【分析】(1)作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE,先求出直线CD'的关系式,

得出点 E 的坐标, 求出 AE=2, 根据勾股定理求出 $CD=\sqrt{13}$, $DE=\sqrt{5}$, $CE=2\sqrt{5}$, 即可得出答案;

(2) 将点 D 向右平移 1 个单位得到D' (1,2),作D'关于 x 轴的对称点D'' (1,-2),连接CD''交 x 轴于点 F,将点 F 向左平移 1 个单位到点 E,此时点 E 和点 F 为所求作的点,用待定系数法求出CD''的关系式,然后求出与 x 轴的交点坐标,即可得出答案.

【详解】 (1) 解 如图,作点 D 关于 x 轴的对称点D',连接CD'与 x 轴交于点 E,连接 DE,由模型可知 \triangle CDE 的周长最小,



::在矩形 *OACB* 中, *OA*=3, *OB*=4, *D* 为 *OB* 的中点,

 $\therefore D$ (0, 2) , C (3, 4) , D' (0, -2) ,

设直线CD'为y=kx+b, 把C(3, 4), D'(0, -2)代入,

得3k+b=4, b=-2, 解得 k=2, b=-2,

∴直线CD'为y = 2x-2,

令 *y*=0,得 *x*=1,

∴点 *E* 的坐标为(1, 0).

 $\therefore OE=1$, AE=2,

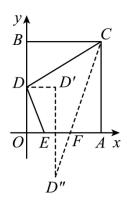
利用勾股定理得 $CD = \sqrt{3^2 + 2^2} = \sqrt{13}$,

$$DE = \sqrt{1^2 + 2^2} = \sqrt{5},$$

$$CE = \sqrt{2^2 + 4^2} = 2\sqrt{5},$$

∴ △*CDE* 周长的最小值为: $\sqrt{13} + \sqrt{5} + 2\sqrt{5} = \sqrt{13} + 3\sqrt{5}$.

(2)解:如图,将点D向右平移 1 个单位得到D'(1,2),作D'关于x 轴的对称点D''(1,—2),连接CD''交x 轴于点F,将点F 向左平移 1 个单位到点E,此时点E 和点F 为所求作的点,连接D''F,此时四边形CDEF周长最小,



理由如下:

::四边形 CDEF 的周长为 CD+DE+EF+CF, CD 与 EF 是定值,

::DE+CF 最小时,四边形 CDEF 周长最小,

 $:DD' \parallel EF$, ∃DD' = EF,

:四边形DD'FE为平行四边形,

::DE=D'F,

根据轴对称可知, $D'F = D^{"}F$,

 $\therefore DE + CF = D'F + CF = FD'' + CF = CD'',$

设直线CD''的解析式为y=kx+b, 把C(3,4), D''(1,-2)代入,

得 ${3k+b=4 \atop k+b=-2}$,解得 ${k=3 \atop b=-5}$,

::直线CD''的解析式为y = 3x-5,

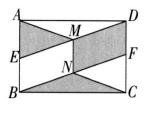
::点 F 坐标为 $\left(\frac{5}{3},0\right)$,

∴点 E 坐标为 $\left(\frac{2}{3},0\right)$.

【点睛】本题主要考查了轴对称的性质,将军饮马问题,根据题意作出辅助线,找出最短时动点的位置, 是解题的关键.

【类型 2 转化思想】

8. (2022 秋·山东济宁·八年级济宁学院附属中学校考期末)如图,矩形 ABCD 中,点 E、F 分别是 AB、CD 的中点,连接 DE 和 BF,分别取 DE、BF 的中点 M、N,连接 AM、CN、MN,若AB = 4,BC = 6,则图中阴影部分的面积为()



A. 4

B. 6

C. 12

D. 24

【答案】

C

【解析】解:点 E、F分别是 AB、CD 的中点,M、N分别为 DE、BF 的中点,

矩形绕中心旋转 180° 阴影部分恰好能够与空白部分重合,

阴影部分的面积等于二分之一空白部分的面积,

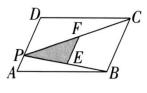
阴影部分的面积=矩形的面积,

AB=4,BC=6,

阴影部分的面积=12,

故选:C.

9.如图,P为 \square ABCD 的边 AD 上的一点,E、F分别是 PB、PC 的中点, \triangle PEF、 \triangle PDC、 \triangle PAB的面积分别为 S、 S_1 、 S_2 ,若S=3,则 S_1+S_2 的值是()



A. 3

B. 6

C. 12

D. 24

【答案】

C

【解析】如图,过点 P 作PQ//DC交 BC 于点Q.

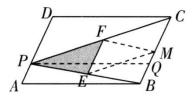
- $\label{eq:spdc} \therefore S_{\triangle PDC} = S_{\triangle CQP}, \ S_{\triangle ABP} = S_{\triangle QPB}.$
- ::EF为 △ PCB的中位线,
- \therefore EF//BC, EF = $\frac{1}{2}$ BC.

取 BC 中点 M, 连接 EM、FM, 则有 △ PEF △ △ EBM △ △ FMC △ △ MFE,

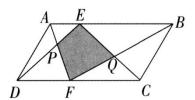
- $\therefore S_{\triangle PEF} = S_{\triangle EBM} = S_{\triangle FMC} = S_{\triangle EFM},$
- $\therefore S_{\triangle PBC} = 4S_{\triangle PEF} = 12,$

$$\label{eq:sphere:equation:sphere:equation:sphere:equation:sphere:equation:sphere:equation:sphere:equation: S_{\triangle PBC} = S_{\triangle CQP} + S_{\triangle QPB} = S_{\triangle PDC} + S_{\triangle ABP} = S_1 + S_2 = 12.$$

故选C.



10. 如图,在 \Box ABCD中,E、F分别是 AB、DC 边上的点,AF与 DE 交于点 P,BF与 CE 交于点 Q,若 $S_{\triangle APD}$ = 20c m^2 , $S_{\triangle BQC}$ = 30c m^2 ,则图中阴影部分的面积为_____c m^2 .



【答案】

50

【解析】连接 E、F 两点,

:四边形 ABCD 是平行四边形,

∴ AB//CD.

∴ △ EFC的 FC 边上的高与 △ BCF的 FC 边上的高相等,

 $\therefore S_{\triangle EFC} = S_{\triangle BCF},$

$$\therefore S_{\triangle EFO} = S_{\triangle BCO}.$$

同理: $S_{\triangle EFD} = S_{\triangle ADF}$,

$$: S_{\triangle EFP} = S_{\triangle ADP}.$$

 $: S_{\triangle APD} = 20 \text{cm}^2, S_{\triangle BQC} = 30 \text{cm}^2,$

$$: S_{\text{四边形EPFQ}} = 50 \text{cm}^2.$$

- 11. 正方形 ABCD、正方形 BEFG 和正方形 RKPF 的位置如图所示,点 G 在线段 DK 上,正方形 BEFG 的边长为
- 4,则△DEK的面积为_____.



【答案】

【解析】

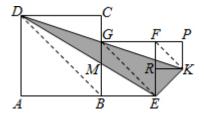
【分析】

此题主要考查正方形的性质,三角形和正方形面积公式,平行线之间的距离,结合图形巧妙转化解决问题.

连接 DB,GE,FK,则DB//GE//FK,再根据正方形 BEFG 的边长为 4,可求出 $S_{\triangle DGE} = S_{\triangle GEB}$, $S_{\triangle GKE} = S_{\triangle GFE}$,再由 $S_{\text{PH}} = S_{\text{EF}}$ 即可求出答案.

【解答】

解:如图,



连接 DB, GE, FK, 则DB//GE//FK,

在梯形 GDBE 中, $S_{\triangle DGE} = S_{\triangle GEB}$ (同底等高的两三角形面积相等),

同理 $S_{\triangle GKE} = S_{\triangle GFE}$.

 $∴ S_{\text{PI}} = S_{\triangle \text{DGE}} + S_{\triangle \text{GKE}},$

 $= S_{\triangle GEB} + S_{\triangle GEF},$

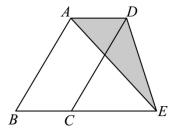
= S_{正方形GBEF},

 $=4\times4$

= 16.

故答案为: 16.

12.(2022 秋·山东济宁·八年级济宁学院附属中学校考期末)如图,在 $\square ABCD$ 中,E为边BC延长线上一点,连结AE、DE. 若 $\triangle ADE$ 的面积为 2,则 $\square ABCD$ 的面积为().



A. 5

B. 4

C. 3

D. 2

【答案】B

【分析】首先根据平行四边形的性质,平行四边形ABCD和 $\triangle ADE$ 的高相等,即可得出 $\Box ABCD$ 的面积.

【详解】解::四边形ABCD为平行四边形,

 $AD \parallel BC$,

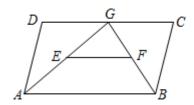
::平行四边形ABCD和 △ ABE的高相等,

设其高为h, $S_{\square ABCD} = 2S_{\triangle ADE} = 4$,

故答案为B.

【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.

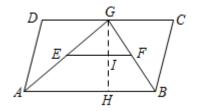
13.(2023 春·八年级期末)如图,平行四边形 ABCD 中,G 在 CD 上,E、F 是 AG、BG 的中点,那么四边形 ABCD 的面积是 \triangle GEF 面积的_____倍.



【答案】8

【分析】过点 G 作 $GH \perp AB$ 交 $EF \equiv I$, 垂足为 H, 根据三角形的中位线的性质进行求解即可.

【详解】解:过点G作 $GH \perp AB$ 交EF于I,垂足为H,如下图:



 $::E \setminus F \neq AG \setminus BG$ 的中点,

 $:: EF = \frac{1}{2}AB, \quad GI = \frac{1}{2}GH, \quad EF ||AB,$

 $\mathbb{X} : S_{\square ABCD} = AB \cdot GH, \ S_{\triangle GEF} = \frac{1}{2}GI \cdot EF,$

 $\therefore S_{\triangle GEF} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} GH \cdot AB = \frac{1}{8} GH \cdot AB,$

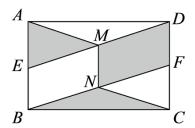
 $:: S_{\Box ABCD} = 8S_{\triangle GEF},$

故答案为: 8.

【点睛】本题考查了三角形中位线的性质,解决本题的关键是正确的作出辅助线.

14. (2020 秋·重庆南岸·九年级重庆第二外国语学校校考期末) 如图, 在矩形ABCD中, 点E、F分别是AB、CD

的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM 、CN 、MN . 若AB=3 , $BC=2\sqrt{5}$,则图中阴影部分的面积为



【答案】3√5

【分析】利用三角形中线的性质以及平行线的性质得出 $S_{\triangle AEM} = S_{\triangle AMD},\ S_{\triangle BNC} = S_{\triangle FNC},\ S_{ ext{DID} \to EBNM} =$

 $S_{\text{mid} ext{*} DMNF}$,即可得出答案.

【详解】解: $: 点E \setminus F$ 分别是 $AB \setminus CD$ 的中点,连接 $DE \cap BF$,分别取 $DE \setminus BF$ 的中点 $M \setminus N$,

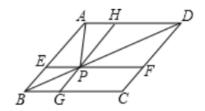
 $::S_{\triangle AEM} = S_{\triangle AMD}$, $S_{\triangle BNC} = S_{\triangle FNC}$, $S_{四边形EBNM} = S_{回边形DMNF}$,

:. 图中阴影部分的面积 = $\frac{1}{2} \times AB \times BC = \frac{1}{2} \times 3 \times 2\sqrt{5} = 3\sqrt{5}$.

故答案为: 3√5.

【点睛】本题主要考查了矩形的性质以及三角形中线的性质,得出图中阴影部分的面积等于矩形ABCD面积的一半是解题关键.

15. (2023 春·八年级期末) 如图,平行四边形 ABCD 中,过对角线 BD 上一点 Р 作 EF∥BC,GH∥AB,且 CG= 2BG,连接 AP,若 S_{△PBG}=2,则 S _{□边形 AEPH}=____.



【答案】8

【分析】由题意根据平行四边形的判定和性质,进行面积的等量代换分析即可求解.

【详解】解: ::EF||BC, GH||AB,

∴四边形 HPFD、四边形 PGCF、四边形 BGPE 是平行四边形,

 $\therefore S_{\triangle BEP} = S_{\triangle PBG}, S_{\triangle HPD} = S_{\triangle PFD}, S_{\triangle ABD} = S_{\triangle BCD},$

 $::S_{\triangle PBG}=2$,

∴CG=2BG,

 $\therefore S_{\text{四边形}PGCF} = 2S_{\text{四边形}BGPE} = 2 \times 4 = 8,$

 $::S_{\text{四边形}AEPH} = S_{\triangle ABD} - S_{\triangle BEP} - S_{\triangle HPD}, S_{\text{四边形}PGCF} = S_{\triangle BCD} - S_{\triangle PBG} - S_{\triangle PFD},$

 $::S_{\text{四边形}AEPH} = S_{\text{四边形}PGCF} = 8.$

故答案为: 8.

【点睛】本题考查的是平行四边形的判定和性质,熟练掌握平行四边形的性质定理是解题的关键.

【类型3 分类讨论思想】

16. 在 \square ABCD中,已知AB = 6,BE平分 \angle ABC交AD边于点 E,点 E将AD分为1:3两部分,则AD的长为

【答案】

8或24

【解析】

【分析】

本题考查了平行四边形的性质、平行线的性质、角平分线定义、等腰三角形的判定等知识; 熟练掌握平行四边形的性质,证出AB = AE是解题的关键.由平行四边形的性质和角平分线得出AB = AE = 6,再由已知条件得出DE = 18或DE = 2,分别求出 AD即可.

【解答】

解: : BE平分∠ABC,

- $\therefore \angle ABE = \angle CBE$,
- :四边形 ABCD 是平行四边形,
- ∴ AD//BC,
- $\therefore \angle BEA = \angle CBE$,
- $\therefore \angle ABE = \angle BEA$,

 $\therefore AB = AE = 6.$

- :点 E 将 AD 分为 1: 3 两部分,
- ∴ DE = 18或DE = 2,
- ∴当DE = 18时, AD = 24;

当DE = 2, AD = 8.

17. 在□ABCD 中,AD = BD,BE 是 AD 边上的高,∠EBD = 20°,则∠A的度数为 .

【答案】

55°或35°

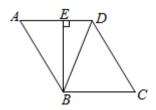
【解析】

【分析】

此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键. 首先求出 ∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.

【解答】

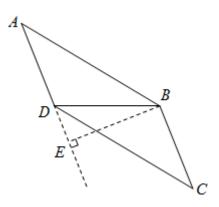
解:情形一: 当 E 点在线段 AD 上时,如图所示,



- : BE是 AD 边上的高,∠EBD = 20°,
- $\therefore \angle ADB = 90^{\circ} 20^{\circ} = 70^{\circ},$
- : AD = BD,

$$\therefore \angle A = \angle ABD = \frac{180^{\circ} - 70^{\circ}}{2} = 55^{\circ}.$$

情形二: 当 E 点在 AD 的延长线上时,如图所示,



- : BE是 AD 边上的高, ∠EBD = 20°,
- $\therefore \angle BDE = 70^{\circ}$,
- : AD = BD,

$$\therefore \angle A = \angle ABD = \frac{1}{2} \angle BDE = \frac{1}{2} \times 70^{\circ} = 35^{\circ}.$$

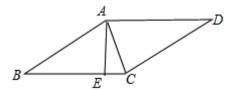
故答案为55°或35°.

18. 已知在 □ ABCD 中, AE 为 BC 边上的高,且AE = 12,若AB = 15,AC = 13,则 □ ABCD 的面积为

【答案】

48 或 168

【解析】解: ①如图,高 AE 在 \triangle ABC内时,在Rt \triangle ABE中,BE = $\sqrt{AB^2 - AE^2} = \sqrt{15^2 - 12^2} = 9$,在Rt \triangle AEC中,CE = $\sqrt{AC^2 - AE^2} = \sqrt{13^2 - 12^2} = 5$,

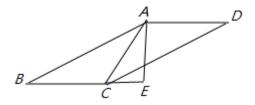


 $\therefore BC = BE + EC = 14$

$$\therefore$$
 S_{平行四边形ABCD} = BC × AE = 14 × 12 = 168.

②如图,高 AE 在 \triangle ABC外时,BC = BE-CE = 9-5 = 4,

∴
$$S_{\text{平行四边 $HABCD}} = BC \times AE = 12 \times 4 = 48$,$$

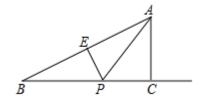


故答案为: 48 或168.

分高 AE 在 $\triangle ABC$ 内外两种情形,分别求解即可.

本题考查平行四边形的性质. 四边形的面积,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.

19. (2023 春·八年级期末) 如图,在 \triangle ABC中, \angle ACB = 90°, \angle A = 60°, AC = 4, E 为斜边 AB 的中点,点 P 是射线 BC 上的一个动点,连接 AP、PE,将 \triangle AEP 沿着边 PE 折叠,折叠后得到 \triangle EPA',当折叠后 \triangle EPA'与 \triangle BEP 的重叠部分的面积恰好为 \triangle ABP 面积的四分之一,则此时 BP 的长为______.



【答案】4或4√3

【分析】根据 30° 角所对的直角边等于斜边的一半可求出 AB,即可得到 AE 的值,进而根据勾股定理求出

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/88502103214
0012011