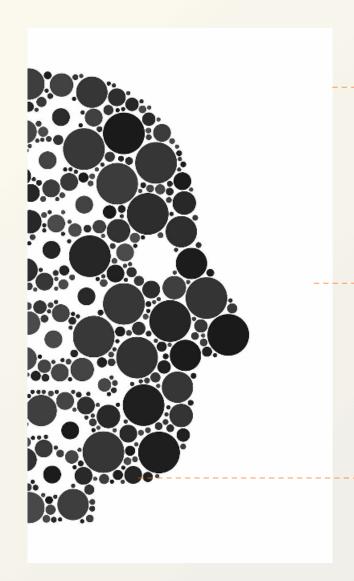


# 目录



- ・引言
- 妊娠糖尿病大鼠造模方法
- 各种造模方法的优缺点比较

# 目录




- 妊娠糖尿病大鼠模型的评价标准
- 妊娠糖尿病大鼠模型的应用前景
- ・结论与展望





# 研究背景与意义





妊娠糖尿病(GDM)发病率逐年上升,严重影响母婴健康。



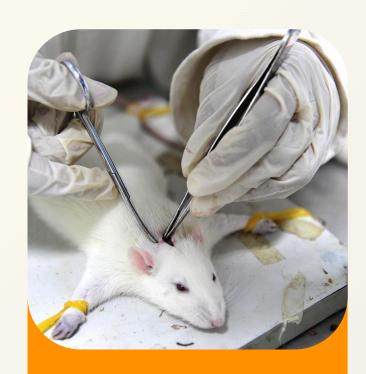
大鼠模型在GDM发病机制、预防和治疗研究中具有重要作用。



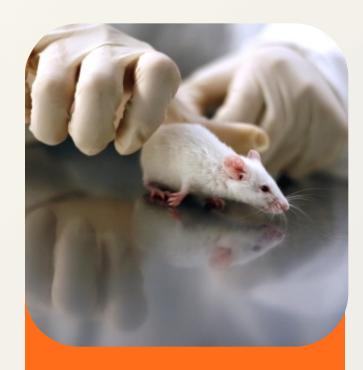
深入探讨GDM大鼠造模方法,有助于为临床研究提供 更为可靠的动物实验依据。



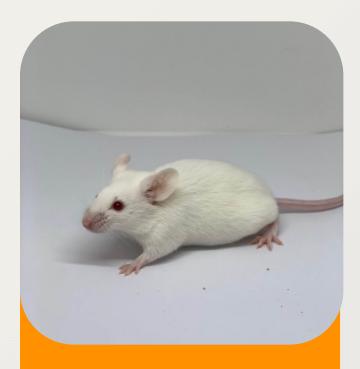



01 妊娠糖尿病是指在妊娠期间首次发现或发生的糖代谢异常疾病。

02 GDM患者通常无明显症状,但可能导致母婴并发症风险增加。


GDM的诊断和治疗需依据严格的血糖监测和个体化管理方案。




# 大鼠模型在妊娠糖尿病研究中的应用



大鼠模型具有繁殖周期短、成 本低、易于操作等优点,在 GDM研究中广泛应用。



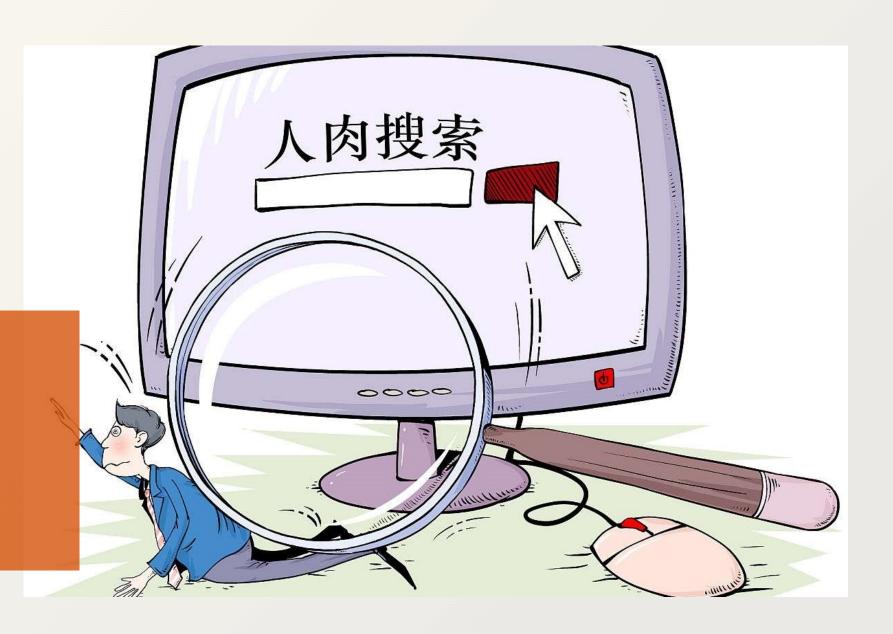
通过诱导大鼠产生胰岛素抵抗 或胰岛素分泌不足,可成功构 建GDM大鼠模型。



GDM大鼠模型可用于研究 GDM的发病机制、预防和治疗 手段的有效性及安全性。



# 妊娠糖尿病大鼠造模方法




#### 高糖高脂饮食

通过给予大鼠高糖高脂饲料,模拟人 类不健康的饮食习惯,诱导其出现胰 岛素抵抗和血糖升高。

#### 链脲佐菌素注射

在给予高糖高脂饮食的同时,注射低剂量的链脲佐菌素,破坏胰腺β细胞功能,加速糖尿病的发生。





## 链脲佐菌素单独使用

直接注射高剂量的链脲佐菌素,导致胰腺β细胞大量破坏,胰岛素分泌不足,从而诱发糖尿病。

## 四氧嘧啶注射

注射四氧嘧啶可选择性地破坏胰腺β细胞,降低胰岛素分泌,引起高血糖。





### 胰腺部分切除术

通过手术切除部分胰腺组织,减少胰岛素的分泌,导致血糖升高。

### 卵巢切除术联合高糖饮食

切除卵巢后,大鼠体内雌激素水平下降,再给予高糖饮食,易诱发妊娠期糖尿病。





#### 敲除或敲入相关基因

利用基因编辑技术,如CRISPR/Cas9系统,敲除或敲入与胰岛素分泌、胰岛素抵抗等相关的基因,构建基因工程化大鼠模型。

#### 转基因技术

将外源基因导入大鼠基因组中,使其过量表达或抑制某些特定蛋白的表达,从而模拟人类妊娠期糖尿病的发病机制。



# 各种造模方法的优缺点比较



# 饮食诱导法优缺点



### 优点

操作简便,成本较低,能够模拟人类 妊娠糖尿病的自然发病过程。

### 缺点

造模周期长,需要严格控制饲料成分 和喂养量,个体差异较大,成功率相 对较低。



# 药物诱导法优缺点

## 优点

造模周期短,成功率高,可重复性较好,能够模拟人类妊娠糖尿病的急性发病过程。

### 缺点

需要注射药物,对大鼠有一定创伤,可能会影响实验结果。同时,药物剂量和注射时间需要精确控制, 操作难度较大。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <a href="https://d.book118.com/886034242155010145">https://d.book118.com/886034242155010145</a>