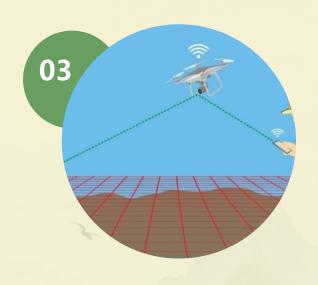

研究背景与意义


无人机应用广泛

无人机在军事、民用等领域具有广泛应用,如侦察、通信中继、目标跟踪、环境监测等。

编队控制重要性

多无人机编队控制是实现 无人机集群协同作战、提 高任务执行效率的关键技 术。

自适应方法优势

自适应方法能够根据环境 变化和任务需求,自动调 整控制策略,提高编队控 制的鲁棒性和适应性。

国内外研究现状及发展趋势

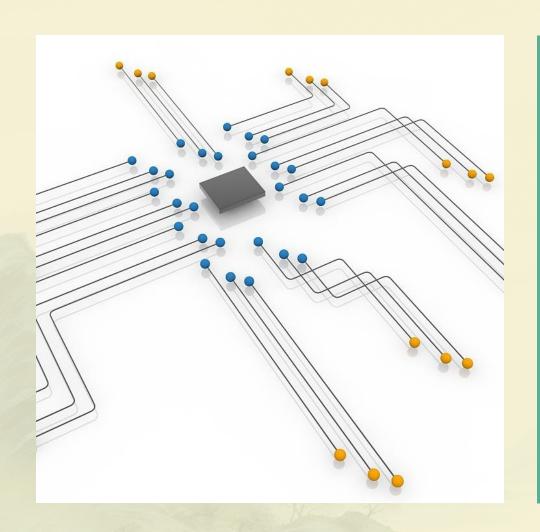
国内外研究现状

目前,多无人机编队控制方法主要包括基于行为的方法、基于图论的方法、基于优化算法的方法和基于学习的方法等。这些方法在特定场景下取得了一定的成果,但仍存在一些问题,如对环境变化适应性差、控制精度低等。

发展趋势

未来,多无人机编队控制将更加注重自适应、智能化和协同化。自适应方法将更多地应用于编队控制中,以提高系统的鲁棒性和适应性。同时,随着人工智能技术的发展,基于深度学习的编队控制方法将成为研究热点。此外,多无人机协同控制、异构无人机编队控制等也将成为未来发展的重要方向。

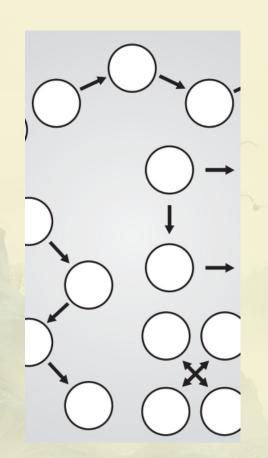
本文主要研究内容及创新点

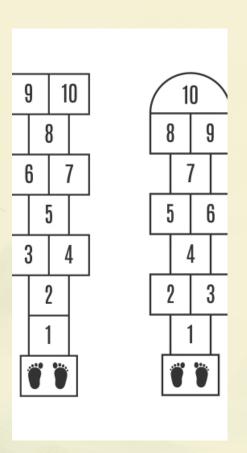


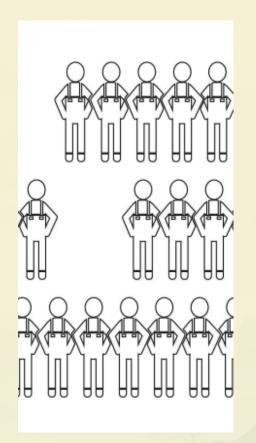
本文主要研究内容及创新点

创新点:本文的创新点主要包括以下几个方面

1. 提出一种基于自适应方法的编队控制算法,能够根据环境变化和任务需求自动调整控制策略,提高编队控制的鲁棒性和适应性。




2. 设计一种基于图论的队形生成算法,能够快速生成满足任务需求的编队队形。



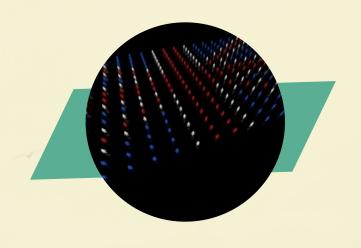
本文主要研究内容及创新点

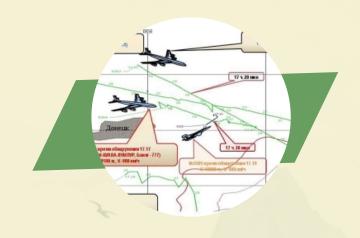
01

3. 提出一种基于优化算法的队形保持和队形变换策略,能够在保持队形稳定的同时实现灵活变换。

02

4. 通过仿真实验验证所提算法的 有效性和优越性,为多无人机编 队控制的实际应用提供理论支持 和技术指导。


无人机动力学模型


无人机运动方程

描述无人机在三维空间中的位置、速度和加速度等运动状态。

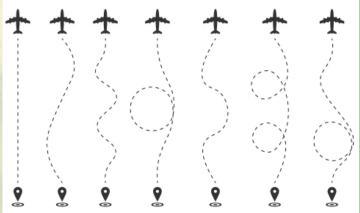
无人机姿态模型

描述无人机的姿态角(滚转角、俯仰角和偏航角) 及其变化率。

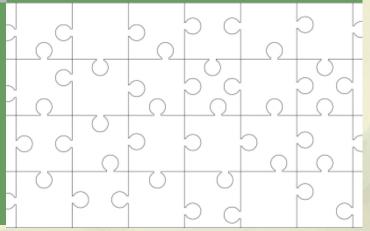
无人机动力学特性

分析无人机的质量、惯性 和气动特性等,建立相应 的动力学方程。

编队队形描述与定义


编队队形参数

定义编队中无人机之间的相对位置、 距离和角度等参数。


编队稳定性分析

研究编队在受到外部干扰或内部误差 影响时的稳定性问题。

编队队形变换

描述编队在不同任务需求下的队形变换策略,如扩展、收缩、旋转等。

通信拓扑结构与信息交互机制

通信拓扑结构

设计多无人机之间的通信网络拓扑结构,包括集中式、分布式和混合式等类型。

信息交互协议

制定无人机之间的信息交互协议,包括数据格式、传输频率和通信距离等。

通信延迟与丢包处理

分析通信过程中可能出现的延迟和丢包问题,并制定相应的处理策略。

自适应控制理论概述

自适应控制定义

自适应控制是一种能够自动调整 自身参数或结构以适应被控对象 动态特性变化的控制方法。

自适应控制原理

通过在线辨识被控对象的参数或 结构,自适应控制器能够实时调 整控制策略,以保持系统稳定性 和性能。

自适应控制应用

自适应控制广泛应用于航空航天、 机器人、化工等领域,尤其在处 理具有不确定性、非线性和时变 性的系统时表现出色。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/886212230111010141