人教版(2019)高中生物必修2《遗传与进化》期末复习 考点提纲默写练习版

1

1、两个亲本杂交后双亲的遗传物质	f会在亲代体内发生混合,子代表现出介于双亲之间
的形状,这种观点称作	,这种观点是的。
2、豌豆特点是	,自然状态下,交配方式
玉米特点是	
,自然状态下	交配方式:,或称
作。	
3、人工异花传粉流程:	0
4、正反交是指相	互交换,其中正交实验可以指定。
5、孟德尔对分离现象的解释: 1、	
3,	
4、	
6、 相对性状: 种生物的	_种性状的表现类型。
7、显性性状: 具有相对性状的两个	·亲本杂交,
隐性性状: 具有相对性状的两个亲	本杂交,
性状分离: 在后代中同时出现	1性状的现象。
8、性状分离比的模拟实验中甲乙两	万个小桶分别代表,彩球分别代
表,每个小桶桶内	的彩球比例为,两个小桶的总球数
目,实验过程中抓取的	彩球需要。
9、 孟德尔分离定律的实验中, 孟	德尔的解释属于,设计测交实验属
于,进行测交实验属于_	•
答案: 1、融合遗传 错误2、雌雄	同株,雌雄同花,闭花授粉 自交 雌雄同株,雌
雄异花 随机交配	
自由交配3、去雄→ 套袋→采集	花粉 → 人工传粉 → 套袋4、父本母本 随机5、
生物性状是由遗传因子决定的,既	不会相会融合, 也不会消失 遗传因子是成对存在的
形成配子时遗传因子分离,配子只	含其中一个 受精时雌雄配子的结合是随机的 6、
同一 、同一 、不同 7、F1表现出	出来 F1不表现出来 杂种 显性性状和隐性性状
8、 雌雄生殖器官 雌雄配子 一	比一 可以不等 放回9、假说 演绎 实验验证

1 、隐性基因: 控制的基因。
等位基因:位于一对同源染色体上的位置上,决定性状,例如D和。注
D和D(是、不是)等位基因
2、 纯合子与杂合子
2、 纯合子与杂合子
杂合子: 稳定的遗传,后代性状分离)
3、基因型+环境 →
以下两种方法均是杂合子和纯合子的鉴别方法:
广 若,则待测个体为纯合子
为一个有一个的人,则待测个体为纯合子。 测交法(判断常用) 若,则待测个体为杂合子
若,则待测个体为杂合子
自交法(判断常用)
自交法(判断常用)
若,则待测个体为杂合子
4、杂合子(Aa)连续自交n次后各基因型比例,杂合子(Aa):
纯合子(AA+aa): (注: AA=) 连续自交淘汰隐性后代的杂合子比
例为:
。自由交配的计算用,杂合子自由交配后代杂合子的比例为,连续
自由交配淘汰隐性后代的杂合子的比例为。
5、验证分离定律的方法:一、;二、;三、;
四、。
6、非等位基因有两种,一种是。非同
源染色体上的非等位基因可以,同一条染色体上的非等位基因发
生。
7、F1的性状表现介于显性和隐性的亲本之间的显性表现形式为。
8、致死遗传分为。由染色体上的基因控制的性状在表现型上
受个体影响的现象,称为从性遗传。
9、判断显隐的方法: 一、
<u> </u>
10、分离定律的内容:

_

答案: 1、显性性状 隐性性状 相同 相对 d 不是 2、能 不发生 不能 发生3、表现型 动物 植物 后代无性状分离 后代有性状分离 后代无性状分离 后代有性状分离4、(1/2) n 1-(1/2) n aa 2/2n +1 配子法 1/2 2/n+2 5、杂合子自交法,后代比例3:1 杂合子和隐性纯合子测交法,后代比例1:1 杂合子配子法也叫花粉鉴定法 单倍体育种法 6、位于同源染色体上的非等位基 因 是位于非同源染色体上的非等位基因 自由组合 连锁7、不完全显性 8、配子致死和合子致死 常 性别 9、无中生有为隐性 被隐藏的为隐性 10、 在生物的体细胞中控制同一性状的遗传因子成对存在,不相融合,在形成配子时成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。

3

1、基因分裂定律的实质
是:。
基因自由组合定律的实质:
0
(注意: 非等位基因要位于上才满足自由组合定律)
F_2 中有种组合方式,种基因型,种表现型,比例。
2、基因重组有四种类型:。
3、9:3:3:1=, 3:1:3:1=,
4、正反交实验的应用:主要用于跟
1,
2,
3、
4、
5、自由组合模拟实验,两对相对性状的两对等位基因应该放在个
小桶。
6、致死分为:

7、复等位基因应该位于对同源染色体,条同源染色体上。
8、从性遗传指位于染色体上的基因,伴性遗传指位于染色体上的基因。
9、孟德尔用山柳菊做实验,并不理想的主要原因是: (1)
(2)
(3)
10、丹麦生物学家给孟德尔的遗传因子一词起了一个新的名字叫做基因,
并且提出了表型和基因型的概念,
与表型有关的基因组成叫做。
11、基因的分离和自由组合定律均发生在
答案:
1、在杂合子的细胞中,位于同一对同源染色体上的等位基因,具有一定的独立性,减
数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配
子中,独立的随配子遗传给后代 位于非同源染色体上的非等位基因的分离或组
合是互不干扰的,在减数分裂过程中同源染色体上的等位基因彼此分离的同时,非同
源染色体上的非等位基因自由组合 非同源染色体 16 9 4 9:3:3:1
互换 自由组合 肺炎链球菌转化 基因工程 3、(3:1)*(3:1)*
(1:1) 4、判断核质(母系遗传)遗传方式 已知核遗传,判断常染色体和伴
性遗传 已知伴性,判断X同源区段或者非同源区段 判断某种基因型的雌配子还
是雄配子致死 5、4 6、配子致死和合子致死 7、一 两 8、常 性 9、山
柳菊没有既容易区分,又可以连续观察的相对性状; 山柳菊有时进行有性生殖
有时进行无性生殖; 山柳菊的花小,难以做人工杂交实验。10、约翰逊 表型
基因型 11、配子
4
1、验证自由组合定律的方法: 一,
_ ,
三,
四,
2、Yyrr×yyRr 后代出现1:1:1:1验证自由组合定律,原因
是:
3、一对杂合子自交后代比例之和为

,两对杂台	} 子自交后	代比例.	之和为_		,三对	杂合子	自交后	代比例	別之和	为	,
n对杂合于	产自交后代	比例之和	和为	0							
4、YyRri	连锁的时候	自交后的	代的基因	型及比例	列为					o	
5、孟德尔	 获得成功	的原因:	1、					2、			
			3、					_4、			
6	`	杂		交	育		种		的		流
程:									°		
7、在医学	学实践中,	人们可	以依据_				<u>_</u>	定律,	对某	 步遗传	病在
后代中的	患病概率值	故出科学	的判断,	从而为				是供理	论依据	星。	
8、自由组	1合定律是	:以			为基础	的。					
9、分离定	2律和自由	组合定征	聿适用于	<u>.</u>				°			
10、基因	工程也叫			,				被称え	为遗传	景学之2	父,
被称为遗	传学第二)	人。									
11、重组	表现型是护	当:			°						
特殊比例	的原因:6	5:3:2:1=	<u> </u>				,原因				
	4:	2:2: 1=	<u> </u>					_,原	因		
	5:3	3:3:1的』	原因								
	1:4	:6:4:1)	是	的	北例 ,	分别对应	应性状力	J			
	41:	1: 1:	41是					的[北例。	其也	可代
表			_`								
						的	比例。				
	造	成	后 代	比比	列	为	3:1	的	两	种	情
况:											
	造	成	后	代	比	列	为	7:	1	的	情
况:											

答案: 1、双杂自交后代比例出现9:3: 3: 1 双杂和双隐测交后代比例是1: 1: 1: 1 花粉鉴定法 单倍体育种法2、不能 无论连锁还是自由组合后代比例均为1: 1: 1: 1 3、4 16 64 4ⁿ

4、YYRR: yyrr:YyRr=1:1:2或者YYrr:yyRR:YyRr=1:1:2 5、选材用了豌豆;

用了数学的统计法分析;由简单到复杂,由一对性状到多对性状的研究; 使用了假说演绎法。6、不同优良性状亲本 *** 产生F1 *** 产生F2 (选育符合要求的个体) *** 获得纯合子 7、分离定律和自由组合 遗传咨询 8、分离定律 9、真核生物的核遗传 10、遗传工程 孟德尔 摩尔根 11、亲本中没有的表现型 (3:1) × (2:1) 其中一对基因的显性纯合致死 (2:1) × (2:1) 两对基因的显性纯合致死 后均致死 AB的雌配子或者雄配子致死 累加效应 四显:三显:二显:一显:零显 连锁后又发生互换 双杂的配子比例、双杂测交的后代基因型比例 Aa自交后代比例以及AaBb测交但是后代三种基因型的表现型一致 AaBbCc测交后代,其中七个的基因型的表现型一致

1、减数分裂(meiosis)是进行 的生物形成 过程中所特有的细胞 分裂方式。在减数分裂过程中,染色体只复制,而细胞连续分 裂 , 新产生的生殖细胞中的染色体数目比体细胞 。 (注: 体细胞主要通过 产生,有丝分裂过程中,染色体复制 ,细胞分 裂 , 新产生的细胞中的染色体数目与体细胞 。) 2、精子的形成过程:精巢(哺乳动物称睾丸) 减数第一次分裂 间期: <u>染色体复制</u>(包括_____和___的合成)。 前期: 同源染色体两两配对(称),形成 。 四分体中的______之间常常发生对等片段的_____。 中期: 同源染色体成对排列在赤道板上()。 后期: 同源染色体 ; 非同源染色体 。 末期: 分裂,形成2个子细胞。 减数第二次分裂 (无同源染色体) 前期:染色体排列散乱。 后期:姐妹染色单体_____,成为两条子染色体。并分别移向细胞____。 末期: 分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。 3、精子与卵细胞的形成过程的比较

卵细胞的形成

精子的形成

不	形成部位	(哺乳动物			
同		称)			
点	过 程	变形期		变开	· · · · · · · · · · · · · · · · · · ·
	子细胞数	一个精原细胞形成	个	一个卵原细胞	包形成个
		精子		卵细胞+	个极体
	相同点	精子和卵细胞中染色体数	目都是個	体细胞的	
4、耳	关会、四分体、	. 互换均发生在			
5、号	受精作用是				的过程。
6, 7	互换发生在			之间:	: 染色体片段的易位
则发	生在				
				之间。	
7、 1	五换的结果导	致的变异类型	,	易位则导致的	J是
相同自由卵巢融合	2、DNA复制 组合 细胞 有 无 4	直,生殖细胞,一次,两次],蛋白质 联会 ,四分位质 着丝粒 赤道板 分 1 3 一半 4、减数第一]过程6、同源染色体的非姐 \$变异	本 非如 分开 一次分裂	且妹染色单体 两极 细胞 ^{製前期5、卵细}	互换 两侧 分离 质 3、精巢、睾丸 l胞和精子相互识别、
1,	(1) 同源染色	6 上体①形态、大小	_; ②-	一条来自	,一条来
自					
(2)	精原细胞和具	卵原细胞的染色体数目与体	细胞	· · · · · · · · · · · · · · · · · · ·	因此,它们属
于	,通过	的方式增殖,但	它们又	可以进行	
成					

(3) 减数分裂过程	星中染色体数目减半发生	生在	,原因
是	。戶	「以减数第二次分裂过	
中			
一对同源染色体=_	四分体= _	条染色体=	条染色单体
=	个DNA分子		
(4) 减数分裂形成	试子细胞种类:		
假设某生物的体细	H胞中含n对同源染色体	5,则:	
它的精(卵)原细	田胞进行减数分裂可形	成种精子(卵细胞)	;
它的1个精原细胞边	进行减数分裂形成	种精子。	
它的1个卵原细胞流	进行减数分裂形成	种卵细胞。	
2、受精作用的特点	和意义: 受精作用是	是精子和卵细胞相互识别、	融合成为受精卵的
过程。精子的	进入卵细胞,	留在外面,不久精子的	的细胞核就和卵细胞
的细胞核融合, 使	受精卵中染色体的数目	又恢复到体细胞的数目,	其中有一半来自精
子,另一半来自卵绿	细胞。		
意义:	和	对于维持生物前后代体	细胞
中	,由于	细胞分别来自不同的	的亲本,因此,由合
子发育成的_		的遗传特性,	具有更强的
和,	这对于生物的	和具有!	重要意义。
3、遗传学上常用果	具蝇做实验材料的原		
因:			o
4、减数分裂是一种	特殊的	o	
5、减数第一次分裂	と与减数第二次分裂之	间通常没有间期或者	,染色体
不再	•		
6、气温过低会影响	可水稻花粉母细胞的	,农业生产上	采取
的措施来预防。			
7、减数分裂中模拟	J的染色体的不同颜色 [。]	代表来自	_°
8、未受精时卵细胞	2的细胞呼吸和物质合	成进行的比较,	受精过程, 使卵细胞
变得十分。			
9、同一双亲的后代	、呈现多样性的原因:		
1、		°	
		2、	

第8页共11页

答案1、(1)基本相同 父方 母方 (2)相同 体细胞 有丝分裂 减数分裂 生殖细胞 (3)减数第一次分裂 同源染色体分离并进入不同的子细胞 无同源染色体 一个 2 4 4 (4) 2 2 2 1 2、头部 尾部 减数分裂 受精作用 染色体数目的恒定 两性生殖 后代 双亲 生活能力变异性 生存 进化 3、一、果蝇的生长周期短繁殖快,二、染色体少容易观察4、有丝分裂5、间期时间很短 复制6、减数分裂 灌深水7、父方和母方 8、缓慢活跃 9、减数分裂形成配子时染色体组合具有多样性,导致了配子遗传物质的差异;受精过程中卵细胞和精子结合的随机性。

7

1,	萨顿利用	万法提出基因在染色	.体上,因		
为_		,摩尔村	艮利用		_方法证
明	基因在染色体上,摩	不根的演绎设计了		等实验。	
2,	判断基因位于常染的	色体上还是 X 染色体上			
	(1) 已知显隐关	系的条件下:			
	可设置"一次	杂交实验",即选择_			
	做亲本进行杂	交.			
	(2) 在未知显隐	关系的条件下,可设置_		实验来进行判断。	,
	预期结果及结	i论:			
	①若	实验的结果	相同,则基	基因位于常染色体上	0
	②若	实验的结果不相[司,则基因	位于X染色体上。	
	(3) 如果已经给	了后代:直接看后代,看	·后代的		
3,	常染色体遗传病在	男性和女性中患病率	;	而伴X隐性遗传病在	三人群中
表	现为男性患者	女性患者;而伴》	《 显性遗传	病在人群中表现为多	女性患者
	男性患者。				

4、伴性遗传的概念:
。 5、伴X显性遗传的例子:
件X隐性遗传的例子:
6、代代相传的是
是指
7、区分芦花鸡和非芦花鸡的方法。
IN 区力) 化利用 () · 化利 () / 14 () · 化 () () · 化 () () ·
答案: 1、类比推理法 基因和染色体行为存在着明显的平行关系 假说演绎法 测交和同型隐异型显 2、同型隐 异型显 正反交 正反交 正反交 表现型是否与性别相关联 3、一样 大于 大于 4、基因位于性染色体上,遗传上总是和性别相关联的现象 5、抗维生素D佝偻病 红绿色盲和血友病 6、显性遗传 隐性遗传 性别 7同型隐异型显
8 1、人有条染色体,人类基因组计划测定人的条染色体的DNA序列,分别为
2、用果蝇做实验材料的原
因:。
3、果蝇的体细胞中有对染色体,对常染色体对性染色体。
4、一条染色体上应该有个基因,基因在染色体上呈排列。
5、人类遗传病可以分为:三
大类。
6、单基因遗传病中常见的常显为:。常隐为_
。 7、多基因遗传病的特点:。
8、调查人群中的遗传病的发病率注意事项:;调查
某种遗传病的遗传方式要在中调查。
9、遗传病进行检测和预防主要通过

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/917045126044010006