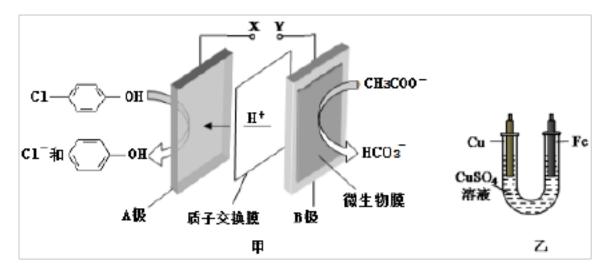
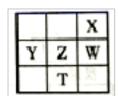

2022 学年高二下学期化学期末模拟测试卷

注意事项:

- 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
- 2. 选择题必须使用 2B 铅笔填涂; 非选择题必须使用 0. 5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚。
- 3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
- 4. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
- 一、选择题(共包括22个小题。每小题均只有一个符合题意的选项)
- 1、25℃时,把 0.2mol/L 的醋酸加水稀释,那么图中的纵坐标 y 表示的是()



- A. 溶液中 OH-的物质的量浓度
- B. 溶液的导电能力
- C. 溶液中的 $\frac{c(CH_3COO-)}{c(CH_3COOH)}$
- D. 醋酸的电离程度
- 2、某化学小组欲利用如图所示的实验装置探究苯与液溴的反应(装置连接顺序为 CDAB)



己知: MnO₂+2NaBr+2H₂SO₄ △ Br₂↑+MnSO₄+Na₂SO₄+2H₂O,下列说法不正确的是

- A. 装置 A 的作用是除去 HBr 中的溴蒸气
- B. 装置B的作用是检验HBr
- C. 可以用装置 C 制取溴蒸气
- D. 装置 D 反应后的混合液经稀碱溶液洗涤、结晶,得到溴苯

- A. 铁电极应与 Y 相连接
- B. 反应过程中甲中右边区域溶液 pH 逐渐升高
- **D**. 当外电路中有 0.2 mol e-转移时,A 极区增加的 H-的个数为 0.1 N_{A}
- $4、设 N_A$ 为阿伏加德罗常数的值,下列说法正确的是()
- A. 16.25 g FeCl₃ 水解形成的 Fe(OH)₃ 胶体粒子数为 0.1N_A
- B. 1L0.1 mol· L_{-1} 硫酸钠溶液中含有的氧原子数为 $0.4N_A$
- C. 0.1 mol KI 与 0.1 mol FeCl₃在溶液中反应转移的电子数为 $0.1N_A$
- D.~0.1~mol 乙烯和乙醇的混合物完全燃烧所消耗的氧分子数为 $0.3N_A$
- 5、下表为元素周期表的一部分,其中 X、Y、Z、W 为短周期元素,W 元素的核电荷数为 X 元素的 2 倍。下列说法正确的是

- A. X、W、Z的原子半径依次递减
- B. Y、Z、W的最高价氧化物的水化物酸性依次递减
- C. 根据元素周期表推测 T 元素的单质具有半导体特性
- \mathbf{D} . 最低价阴离子的失电子能力 X 比 W 强
- 6、某天然碱组成可表示为xNa₂CO₃·yNaHCO₃·zH₂O。取mg该天然碱配成1L溶液M。取出100mLM向其中加入50mL1

 $mol\cdot L$ -1 盐酸,两者恰好完全反应生成 NaCl,同时产生 CO_2 的体积为 672mL(标准状况下),下列推断正确的是()

- A. mg该天然碱中含 0.3molNa₂CO₃ B. r
- B. m g 该天然碱中含 0.3molNa+
- C. 溶液 M 中 c (Na+) =0.5 mol·L-1
- D. 该天然碱中 x:y:z=2:1:2
- 7、下列说法不正确的是()
- A. 己烷有 4 种同分异构体,它们的熔点、沸点各不相同
- B. 在一定条件下, 苯与液溴、硝酸、硫酸作用生成溴苯、硝基苯、苯磺酸的反应都属于取代反应
- C. 油脂皂化反应得到高级脂肪酸盐与甘油

8、下列诗句中,加点字(词)所指代物质的主要成分与其他三项不相同的是

A. 柳絮飞时花满城

B. 朝如青丝暮成雪

C. 狐裘不暖锦衾薄

D. 春蚕到死丝方尽

9、把 VL 含有 $MgS0_4$ 和 K_2S0_4 的混合溶液分成两等份,一份加入含 a mol NaOH 的溶液,恰好使镁离子完全沉淀为氢氧化镁;另一份加入含 b mol $BaCl_2$ 的溶液,恰好使硫酸根离子完全沉淀为硫酸钡。则原混合溶液中钾离子的浓度为

A. (b-a)/V mol·L-1

B. (2b-a)/V mol·L-1

C. 2(2b-a)/V mol·L-1

- D. 2(b-a)/V mol·L-1
- 10、下列原子中未成对电子数最多的是()
- **A.** C
- **B**. 0
- C. N
- **D**. C1

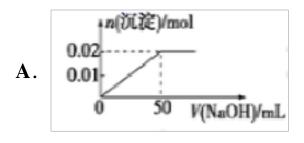
11、己知某有机物的结构简式为 CH, CH=CH—Cl, 该有机物能发生()

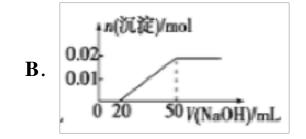
①取代反应 ②加成反应 ③消去反应 ④使溴水褪色 ⑤使酸性 KMnO₄褪色

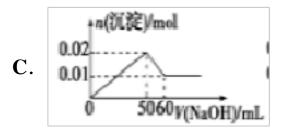
⑥与 AgNO₃溶液生成白色沉淀 ⑦聚合反应

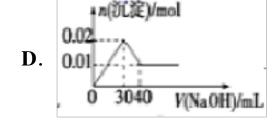
A. 只有⑥不能发生

B. 只有⑦不能发生

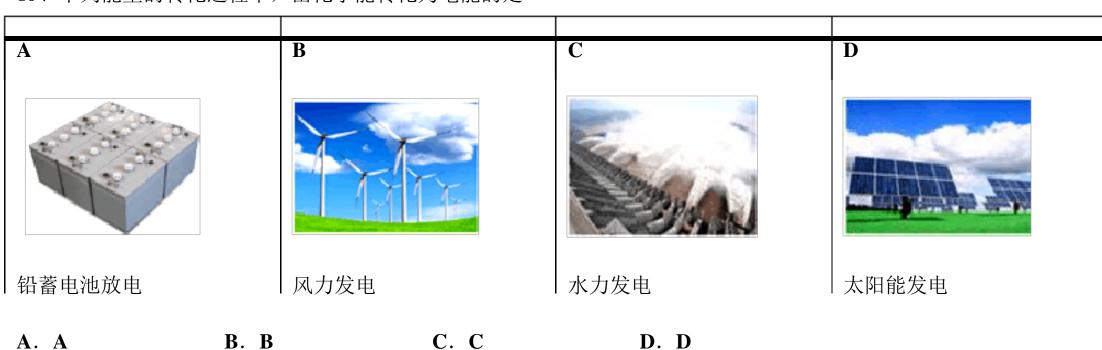

C. 以上反应均可发生

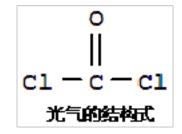

D. 只有②不能发生


12、在密闭容器中充入 $4 \mod X$,在一定的温度下 4X (g) \longrightarrow 3Y (g) + Z (g),达到平衡时,有 30%的发生分解,则平衡时混合气体总物质的量是


- A. 3.4 mol
- B. 4 mol
- C. 2.8 mol
- D. 1.2 mol

13、某溶液中含 $\mathbf{MgCl_2}$ 和 $\mathbf{AlCl_3}$ 各 $\mathbf{0.01}$ \mathbf{mol} ,向其中逐滴滴加 $\mathbf{1}$ $\mathbf{mol/L}$ 的 \mathbf{NaOH} 溶液至过量,下列关系图正确的是




- 14、下列有关说法正确的是()
- A. 油脂在人体内最终分解为甘油和高级脂肪酸
- B. 乙酸乙酯在碱性条件下的水解反应称为皂化反应
- C. 烈性炸药硝化甘油是由甘油与硝酸反应制得,它属于酯类
- D. 合成纤维中吸湿性较好的是涤纶,俗称人造棉花。

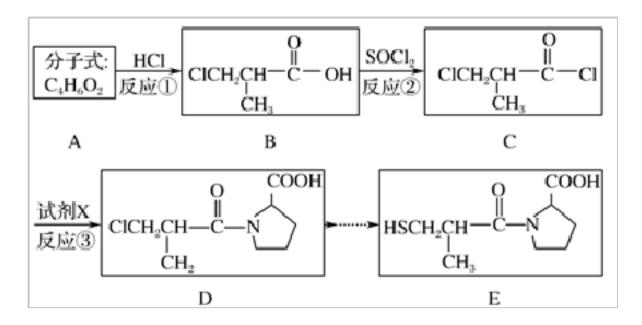
- 15、与 **CO₃2**-不是等电子体的是(
- A. SO₃

- B. BF_3 C. PCl_3 D. NO_3
- 16、下列离子方程式书写正确的是(
- A. 铝粉投入到 NaOH 溶液中: 2Al+2OH-== 2AlO₂-+H₂↑
- **B**. **AlCl**₃溶液中加入足量的氨水: **Al**₃₊₊ **3OH == Al**(**OH**)₃↓
- C. 三氯化铁溶液中加入铁粉: $Fe_{3+} + Fe = 2Fe_{2+}$
- D. FeCl₂溶液跟 Cl₂反应: 2Fe2++Cl₂=2Fe3++2Cl-
- 17、有机化合物与我们的生活息息相关,下列说法正确的是()
- A. 甲苯的硝化、油脂的皂化均可看作取代反应
- B. 蛋白质水解生成葡萄糖放出热量,提供生命活动的能量
- C. 石油裂解的目的是为了提高轻质液体燃料的产量和质量
- D. 棉花和合成纤维的主要成分是纤维素
- 18、下列物质的一氯代物只有一种的是
- A. 新戊烷
- **B**. 2-甲基丙烷 **C**. 邻二甲苯 **D**. 对二甲苯
- 19、下列能量的转化过程中,由化学能转化为电能的是

20、氯仿(CHCl₃)常因保存不慎而被氧化,产生剧毒物光气(COCl₂). 2CHCl₃ + O_{2→2}HCl + 2COCl₂, 下列说法不正确 的有

- A. CHCl:分子为含极性键的非极性分子
- B. $COCl_2$ 分子中含有 3 个g键、一个g键,中心 C 原子采用gp 2 杂化
- C. COCL分子中所有原子的最外层电子都满足 8 电子稳定结构

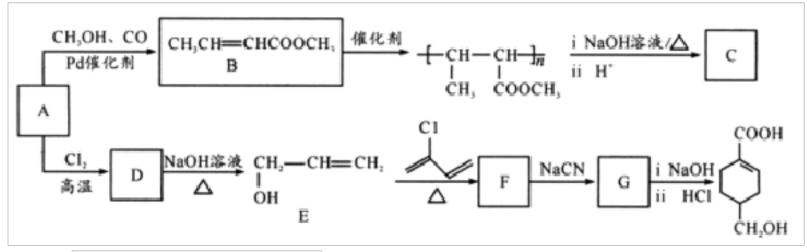
- D. 使用前可用硝酸银稀溶液检验氯仿是否变质
- 21、化学与社会、生活密切相关。对下列现象或事实的解释不正确的是()

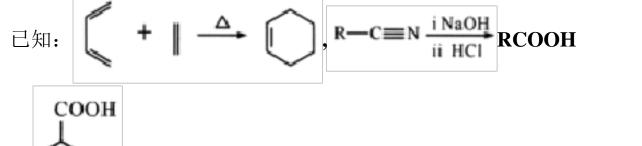

选项	现象或事实	解释
A	春节期间全国各地燃放的烟火	某些金属元素焰色反应所呈现出来色彩
В	Na ₂ 0 ₂ 用于呼吸面具中作为 0 ₂ 的来源	Na ₂ 0 ₂ 是强氧化剂,能氧化 CO ₂ 、H ₂ 0 生成 O ₂
С	K ₂ FeO ₄ 用于自来水的消毒和净化	K ₂ FeO ₄ 具有强氧化性,被还原后生成的 Fe3+水解生成胶状物,可以净化水
D	A1(OH) ₃ 用作医用的胃酸中和剂	A1(OH) ₃ 的碱性不强,但却可以与胃酸反应

- **A**. A
- **B**. B
- **C**. C
- **D**. D

22、"春蚕到死丝方尽,蜡炬成灰泪始干"是唐代诗人李商隐的著名诗句,下列关于该诗句中所涉及物质的说法错误的是()

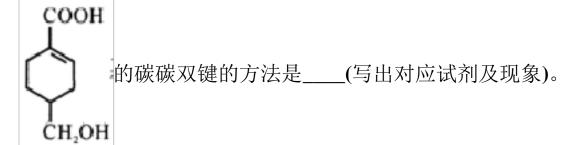
- A. 蚕丝的主要成分是蛋白质
- B. 古代的蜡是高级脂肪酸酯,属于高分子聚合物
- C. 蚕丝属于天然高分子材料
- D. "蜡炬成灰"过程中发生了氧化反应


- 二、非选择题(共84分)
- 23、(14分)卡托普利(E)是用于治疗各种原发性高血压的药物,其合成路线如下:



- (1)A的系统命名为_____, B中官能团的名称是____, B→C的反应类型是____。
- (2) C→D 转化的另一产物是 HC1,则试剂 X 的分子式为____。
- (3) D 在 NaOH 醇溶液中发生消去反应,经酸化后的产物 Y 有多种同分异构体,写出同时满足下列条件的物质 Y 的同分异构体的结构简式: _____、____、____。
- a. 红外光谱显示分子中含有苯环, 苯环上有四个取代基且不含甲基
- b. 核磁共振氢谱显示分子内有 6 种不同环境的氢原子
- c. 能与 FeCl₃溶液发生显色反应

24、(12 分) $\mathbf{A}(\mathbf{C_3H_6})$ 是基本有机化工原料,由 \mathbf{A} 制备聚合物 \mathbf{C} 和



- (2)E→F 的化学方程式为____。
- (3)B的同分异构体中,与B具有相同官能团且能发生银镜反应,其中核磁共振氢谱上显示 3 组峰,且峰面积之比为 6:1:1 的是___(写出结构简式)。
- (4)等物质的量的 分别与足量 NaOH、NaHCO₃反应,消耗 NaOH、NaHCO₃的物质的量之比为_____,检验

25、(12分)苯甲酸甲酯是一种重要的工业原料,有机化学中通过酯化反应原理,可以进行苯甲酸甲酯的合成。有关物质的物理性质、实验装置如下所示:

	苯甲酸	甲醇	苯甲酸甲酯
熔点 /℃	122.4	- 97	- 12.3

沸点 / ℃	249	64.3	199.6
密度/g. cm-3	1.2659	0.792	1.0888
水溶性	微溶	互溶	不溶

实验一:制取苯甲酸甲酯

在大试管中加入 15g 苯甲酸和一定量的甲醇, 边振荡边缓慢加入一定量浓硫酸, 按图 A 连接仪器并实验。

(1)苯甲酸与甲醇反应的化学方程式为	
	0

(2)中学实验室中制取乙酸乙酯时为了提高酯的产率可以采取的措施有______

实验二: 提纯苯甲酸甲酯

该实验要先利用图 B 装置把图 A 中制备的苯甲酸甲酯水洗提纯,再利用图 C 装置进行蒸馏提纯

(3)用图 B 装置进行水洗提纯时,B 装置中固体 Na_2CO_3 作用是_____。

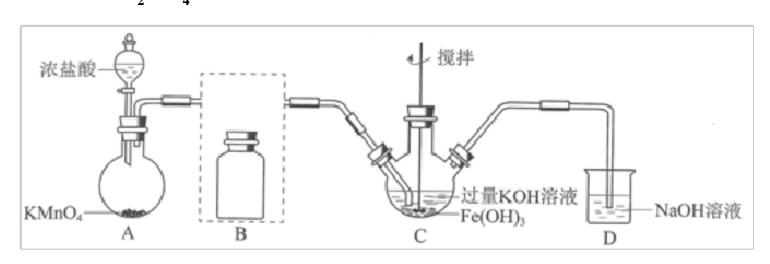
(4)用图 C 装置进行蒸馏提纯时,当温度计显示_____时,可用锥形瓶收集苯甲酸甲酯。

(5)最终制取 15g 苯甲酸甲酯, 计算得苯甲酸甲酯的产率为_____(小数点后保留 1 位有效数字)。

26、(10分)某同学进行影响草酸与酸性高锰酸钾溶液反应速率因素的研究。草酸与酸性高锰酸钾的反应为:

2KMnO₄+5H₂C₂O₄+3H₂SO₄=K₂SO₄+2MnSO₄+10CO₂↑+8H₂O。室温下,实验数据如下:

实验序号	1	2	3
加入试剂	0.01mol/L KMnO_4 $0.1 \text{mol/L H}_2\text{C}_2\text{O}_4$	$egin{aligned} 0.01 & \text{mol/L KMnO}_4 \ & 0.1 & \text{mol/L H}_2 & \text{C}_2 & \text{O}_4 \ & \text{MnSO}_4 & \text{固体} \end{aligned}$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$
褪色时间/s	116	6	117


请回答:

- (1) 该实验结论是_____。
- (2) 还可以控制变量,研究哪些因素对该反应速率的影响____。
- (3)进行上述三个实验后,该同学进行反思,认为实验①的现象可以证明上述结论。请你写出实验①的现象并分析产生该现象的原因____。

- (4) 实验②选用 $MnSO_4$ 固体而不是 $MnCl_2$ 固体的原因是_____。
- 27、(12分)实验小组制备高铁酸钾(\mathbf{K}_{2} **FeO**₄)并探究其性质。

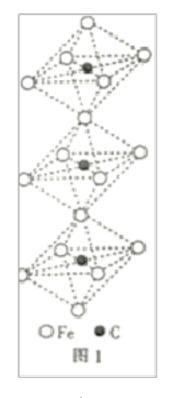
资料: $\mathbf{K_2FeO_4}$ 为紫色固体,微溶于 \mathbf{KOH} 溶液;具有强氧化性,在酸性或中性溶液中快速产生 $\mathbf{O_2}$,在碱性溶液中较稳定。

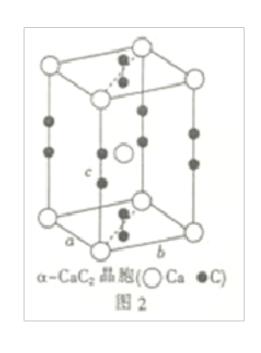
(1) 制备 K_2FeO_4 (夹持装置略)

- ①A 为氯气发生装置。A 中反应方程式是_____(锰被还原为 Mn2+)。
- ②将除杂装置 B 补充完整并标明所用试剂。_____
- ③C中得到紫色固体和溶液。C中Cl₂发生的反应有

3Cl₂+2Fe(OH)₃+10KOH 2K₂FeO₄+6KCl+8H₂O,另外还有_____。

- (2) 探究 **K₂FeO₄**的性质
- ①取 \mathbf{C} 中紫色溶液,加入稀硫酸,产生黄绿色气体,得溶液 \mathbf{a} ,经检验气体中含有 $\mathbf{Cl_2}$ 。为证明是否 $\mathbf{K_2FeO_4}$ 氧化了 \mathbf{Cl} -而产生 $\mathbf{Cl_2}$,设计以下方案:


方案 I	取少量 a,滴加 KSCN 溶液至过量,溶液呈红色。
方案II	用 KOH 溶液充分洗涤 C 中所得固体,再用 KOH 溶液将 K_2 FeO $_4$ 溶出,得到紫色溶液 b。取少量 b,滴加盐酸,有 Cl_2 产生。


- I. 由方案 I 中溶液变红可知 a 中含有______离子,但该离子的产生不能判断一定是 K_2FeO_4 将 CI-氧化,还可能由_____产生(用方程式表示)。
- II. 方案 II 可证明 $\mathbf{K_2FeO_4}$ 氧化了 \mathbf{Cl} -。用 \mathbf{KOH} 溶液洗涤的目的是_____。
- ③资料表明,酸性溶液中的氧化性 FeO^2 。 MnO_4 ,验证实验如下:将溶液 b 滴入 $MnSO_4$ 和足量 H_2SO_4 的混合溶液中,振荡后溶液呈浅紫色,该现象能否证明氧化性 FeO^2 。若能,请说明理由;若不能,进一步设计实验方案。理由或方案:_____。

 $\mathbf{K_5}[\mathbf{Co3+O_4W_{12}O_{36}}]$ (简写为 $\mathbf{Co3+W}$)可催化合成氯磺酰氰酯。

- (1) 基态钴原子的核外电子排布式为_____。组成 $\mathbf{HClO_4}$ - $\mathbf{NaClO_4}$ 的 $\mathbf{4}$ 种元素的电负性由小到大的顺序为
- (2) 氯磺酰氰酯分子中硫原子和碳原子的杂化轨道类型分别是____、__、__、1个氯磺酰氰酯分子中
- 含有σ键的数目为_____, 氯磺酰氰酯中5种元素的第一电离能由大到小的顺序为____。
- (**3**) **ClO₄**-的空间构型为_____。
- (4) 一种由铁、碳形成的间隙化合物的晶体结构如图 1 所示,其中碳原子位于铁原子形成的八面体的中心,每个铁原 子又为两个八面体共用,则该化合物的化学式为______

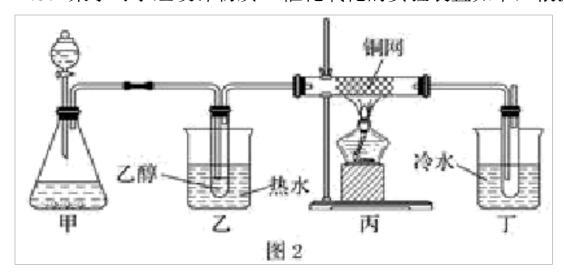

(5) 电石(CaC_2)是制备氯化氰(CICN)的重要原料。四方相碳化钙(CaC_2)的晶胞结构如上图 2 所示,其晶胞参数分别为 a、b、c, 且 a=b, c=640 pm。已知四方相碳化钙的密度为 1.85g·cm-3, [C≡C]2-中键长为 120pm,则成键的碳原子与 钙原子的距离为_____pm 和____pm。(设阿伏加德罗常数的数值为 6×1023) 29、(10 分) 已知: ①A 的产量通常用来衡量一个国家的石油化工水平; ②2CH₃CHO+O₂ ^{催化剂} 2CH₃COOH。现以 A

图 1

为主要原料合成化合物 E, 其合成路线如图 1 所示。回答下列问题:

- (1) 写出下列物质的官能团名称: B: ______; D: ______; D: _______。

(3) 某学习小组设计物质 B 催化氧化的实验装置如下,根据图 2 装置回答问题。

①装置甲锥形瓶中盛放的固体药品可能为____(填字母)。

2 2 2	A.	Na ₂ O ₂ B.	KClC.	Na ₂ CO ₃ D.	MnO,
-------	----	-----------------------------------	-------	------------------------------------	------

(9)公(岭)	- 内凭客棚质摄影员发生反应的化学方提式为	
	丙装置硬质玻璃管中发生反应的化学方程式为	0

③物质 B 的催化氧化产物与葡萄糖具有相同的特征反应,	将所得的氧化产物滴加到新制氢氧化铜悬浊液中加热,	现象
为 。		

2022 学年模拟测试卷参考答案(含详细解析)

一、选择题(共包括22个小题。每小题均只有一个符合题意的选项)

1, **B**

【答案解析】

A.加水稀释促进醋酸电离,但酸的电离程度小于溶液体积增大程度,所以溶液中氢离子浓度逐渐减少,**OH**-的物质的量浓度逐渐增大,故 **A** 错误;

B.醋酸是弱电解质,加水稀释促进醋酸电离,但酸的电离程度小于溶液体积增大程度,所以溶液中氢离子、醋酸根离子浓度逐渐减少,溶液的导电能力逐渐减小,故**B**正确;

C.因温度不变,则
$$\mathbf{K_a}$$
不变,且 $\mathbf{K_a} = \frac{c(\text{CH COO-})}{c(\text{CH COOH})} \times \mathbf{c(H+})$,因 $\mathbf{c(H+)}$ 浓度减小,则 $\frac{c(\text{CH COO-})}{c(\text{CH COOH})}$ 增大,故 **C** 错误;

D.加水稀释,促进电离,醋酸的电离程度增大,故 D 错误;

答案选 B。

2, **D**

【答案解析】

装置C中二氧化锰、溴化钠和硫酸反应制得溴蒸气,溴蒸气通入装置D中与苯发生取代反应生成溴苯和溴化氢,溴化

氢气体中混有溴蒸气和挥发出的苯,溴蒸气会干扰溴化氢的检验,装置 A 中四氯化碳吸收溴蒸气和挥发出的苯,防止溴蒸气会干扰溴化氢的检验,装置 B 中溴化氢与硝酸银溶液反应生成淡黄色溴化银沉淀,检验反应有溴化氢生成。

【题目详解】

A项、装置 A的作用是除去 HBr 中的溴蒸气, 防止溴蒸气会干扰溴化氢的检验, 故 A 正确;

B 项、装置 B 中溴化氢与硝酸银溶液反应生成淡黄色溴化银沉淀, 检验反应有溴化氢生成, 故 B 正确;

C 项、装置 C 中二氧化锰、溴化钠和硫酸反应制得溴蒸气,故 C 正确;

D 项、装置 **D** 中制得的不溶于水的溴苯中混有溴和苯,经水洗、稀碱溶液洗涤、水洗、分液、干燥、分馏得到溴苯,故 D 错误;

故选 D。

【答案点睛】

本题考查溴苯的制备,侧重于学生的分析能力和实验能力的考查,注意分析仪器的作用,注意物质的性质与检验和分离方法的关系是解答关键。

3, **B**

【答案解析】

4, **D**

【答案解析】

- A、16.25 g FeCl₃ 的物质的量为 0.1mol,一个氢氧化铁胶粒是多个氢氧化铁的聚集体,则 0.1mol 氯化铁水解形成的胶粒的个数小于 $0.1N_A$ 个,故 A 错误;
- B、硫酸钠溶液中,除了硫酸钠含氧原子外,水也含氧原子,则溶液中的氧原子的个数大于0.4NA个,故B错误;
- C、KI和 $FeCl_3$ 的反应是一个可逆反应,不能完全反应,则 0.1 mol KI 与 0.1 mol $FeCl_3$ 在溶液中反应,转移的电子数小于 $0.1N_A$,故 C 错误;
- D、1 mol 乙烯和 1 mol 乙醇完全燃烧的耗氧量相同,均为 3 mol,则 0.1 mol 乙烯和乙醇的混合物完全燃烧所消耗的氧分子数为 $0.3N_{A}$,故 D 正确;

答案选 D。

【答案点睛】

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/91800200411 7006027