原料药质量研究培训

演讲人:

日期:

目录 CONTENTS

- 原料药质量研究概述
- 原料药质量标准建立
- 质量研究方法与技术手段
- 实验室管理与数据完整性要求
- 原料药质量风险评估与防范策略
- 持续改进与提高方向探讨

01

原料药质量研究概述

CHAPTER

原料药定义与分类

原料药定义

指用于生产各类制剂的原料药物,是制剂中的有效成份。

原料药分类

按照来源可分为化学合成原料药、植物提取原料药和生物技术制备原料药等。

质量研究目的与意义

质量研究目的

通过对原料药的质量研究,确保制剂的质量稳定、安全有效。

质量研究意义

提高原料药的质量水平,为制剂生产提供合格原料,保障临床用药的安全性和有效性。

国内外法规要求及现状

国内法规要求

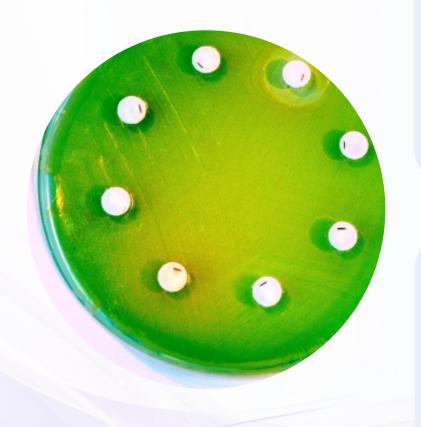
符合国家药品监督管理局的相关要求,如《药品注册管理办法》、《药品生产质量管理规范》等。

国外法规要求

需符合国际通行的GMP标准以及各国药品监管机构的要求。

现状分析

国内外对原料药的质量要求日益严格,加强质量研究是原料药生产企业的必然选择。


02

原料药质量标准建立

CHAPTER

药用原辅材料质量控制指标

鉴别

通过化学、物理或生物学方法,确定原料药的真伪,包括外观、颜色、气味等感官指标以及鉴别试验。

纯度检查

通过化学或生物学方法,检查原料药中的杂质、水分、残留溶剂等含量, 确保原料药的纯度符合规定。

含量测定

采用准确可靠的方法,测定原料药中有效成分或指标性成分的含量,确保原料药的质量符合规定。

微生物限度检查

通过微生物学方法,检查原料药中的 微生物含量,确保原料药不受微生物 污染。

杂质谱分析与控制策略制定

杂质谱分析

采用现代分析技术,对原料药中的杂质进行分离、鉴别和定量,了解杂质的种类、结构和含量。

杂质控制策略

根据杂质谱分析结果,制定杂质控制策略,包括杂质的限度、去除方法、检测方法等,确保原料药中的杂质在可控范围内。

潜在杂质研究

对原料药中可能存在的潜在杂质进行研究,包括其来源、结构、毒性等,制定相应的控制措施。

稳定性考察及有效期确定方法

稳定性考察

在特定条件下,考察原料药的稳定性,包括化学稳定性、物理稳定性和微生物稳定性等,确定原料药在储存和使用过程中的质量变化情况。

• 有效期确定方法

根据稳定性考察结果,结合原料药的性质、包装、储存条件等因素,制定原料药的有效期,并确定有效期的计算方法。

稳定性指示性研究

通过研究原料药在稳定性考察过程中的质量变化,建立稳定性指示性指标,用于评估原料药在有效期内的质量状况。

03

质量研究方法与技术手 段

CHAPTER

仪器分析方法介绍及操作指南

01

色谱分析法

利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,达到分离和测定的目的。包括高效液相色谱法、气相色谱法等。

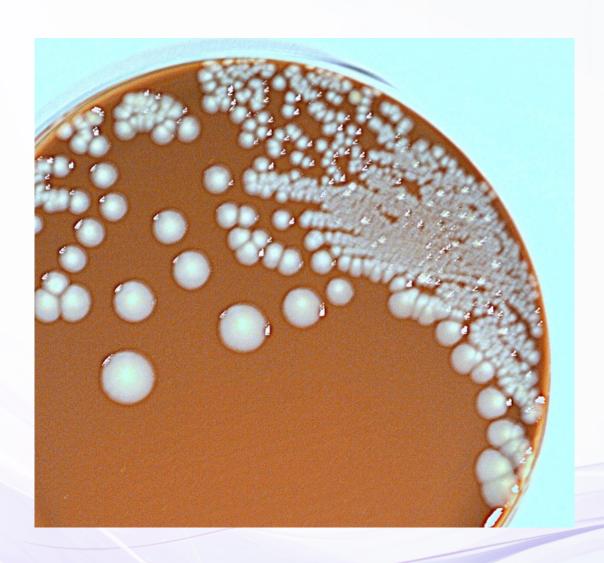
03

质谱分析法

将样品分子离子化后,根据不同离子在电场或磁场中的质荷比进行分离和检测,以确定其分子量、结构等信息。

02

光谱分析法


通过测定物质与电磁辐射的相互作用,对物质进行定性或 定量分析。包括紫外-可见分光光度法、红外分光光度法等。

04

核磁共振法

利用原子核在磁场中的行为,通过测定共振频率、耦合常数等参数,获取分子结构信息。

微生物限度检查方法及注意事项

微生物计数法

包括平板稀释涂布法、薄膜过滤法等,用于测定样品中的活菌数。

微生物限度检查法

通过检查样品中是否含有特定微生物或微生物代谢产物, 以判断其是否符合规定的微生物限度标准。

注意事项

严格执行无菌操作,防止污染;选择合适的培养基和培养条件;对结果进行准确判断和记录。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/948071022126007011