RESEARCH ARTICLE

Open Access

Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence

Bin Li^{1,2}, Qingsong Hu^{1,2}, Ranjie Xu^{1,2}, Haigang Ren¹, Erkang Fei², Dong Chen¹ and Guanghui Wang^{1*}

Background: HS 1 associated protein X 1 (Hax 1), is a multifunctional protein that has sequence homology to Bcl 2 family members. *HAX 1* knockout animals reveal that it plays an essential protective role in the central nervous system against various stresses. Homozygous mutations in the *HAX 1* gene are associated with autosomal recessive forms of severe congenital neutropenia along with neurological symptoms. The protein level of Hax 1 has been shown to be regulated by cellular protease cleavage or by transcriptional suppression upon stimulation.

Results: Here, we report a novel post translational mechanism for regulation of Hax 1 levels in mammalian cells. We identified that PEST sequence, a sequence rich in proline, glutamic acid, serine and threonine, is responsible for its poly ubiquitination and rapid degradation. Hax 1 is conjugated by K48 linked ubiquitin chains and undergoes a fast turnover by the proteasome system. A deletion mutant of Hax 1 that lacks the PEST sequence is more resistant to the proteasomal degradation and exerts more protective effects against apoptotic stimuli than wild type Hax 1.

Conclusion: Our data indicate that Hax 1 is a short lived protein and that its PEST sequence dependent fast degradation by the proteasome may contribute to the rapid cellular responses upon different stimulations.

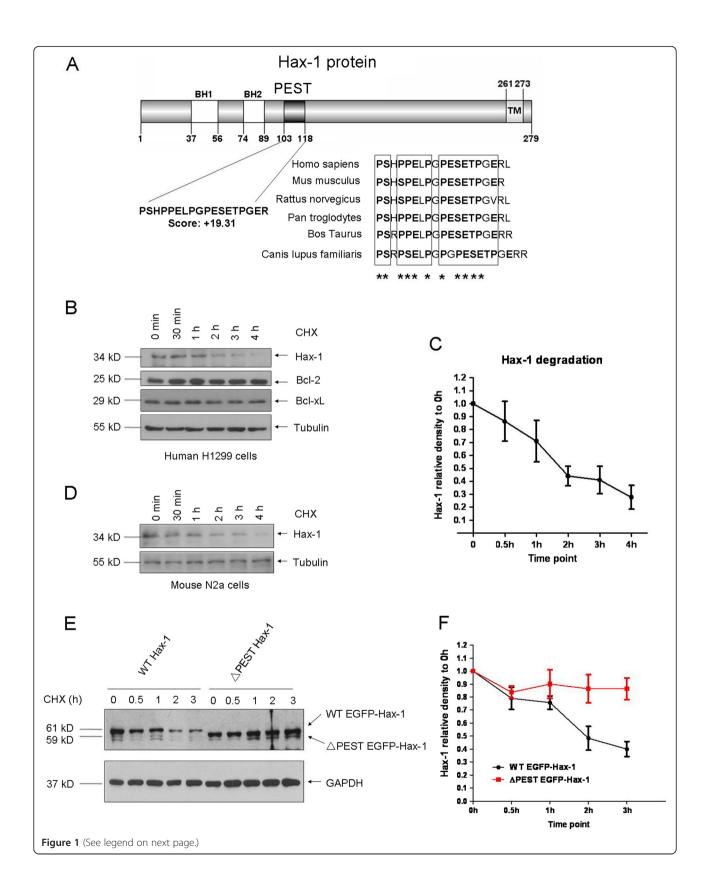
Keywords: Hax 1, Proteasome, Ubiquitin, PEST sequence, Bcl 2 family protein

Background

HS-1-associated protein X-1, Hax-1, is a 35 kDa protein with two Bcl-2 homology (BH) domains that was identified in a yeast two hybrid screen where it was found to interact with HS-1, a Src kinase substrate [1]. Hax-1 is ubiquitously expressed in most tissues and is reported to be localized in mitochondria as well as the endoplasmic reticulum (ER) and nuclear membrane [1-3]. Mutations identified in the human HAX-1 gene have been shown to cause neutropenia and neurodevelopmental abnormalities [4-6]. Knockout HAX-1 mice show increased apoptosis of neurons and postnatal lethality. [7]. Hax-1 is a multifunctional protein that plays roles in calcium homeostasis [8], cell migration [9] and apoptotic regulation [10,11]. It was reported that Hax-1 protects cells against various stimuli and has been shown to interact with a number of cellular

* Correspondence: wanggh@suda.edu.cn

¹Laboratory of Molecular Neuropathology, Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, Jiangsu 201203, People's Republic of China and viral proteins to suppress their pro-death properties [12-15]. In addition, Hax-1 has been found to be up-regulated in breast cancer, lung cancer and melanoma [16], suggesting that it also has a role in oncogenesis.


A PEST sequence is a peptide sequence which is rich in proline (P), glutamic acid (E), serine (S), and threonine (T). It is known that the PEST sequence functions as a proteolytic signal to target proteins for degradation resulting in short intracellular half lives [17]. For example, the PEST sequence of NF-kappa B is responsible for its cleavage by calpain [18]. It was reported that c-myc, a protein with a PEST sequence, has a half-life shorter than one hour [17]. Notch 1, another short-lived protein, is ubiquitinated by an E3 ligase sel-10 and degraded by the proteasome dependent on its PEST sequence [19,20].

Hax-1 was predicted to contain a PEST sequence (aa 104–117) [1], however, it is still unknown whether this PEST sequence effects its turnover rate. In this study, we investigated the stability of Hax-1 in different cells and explored the role of the PEST sequence in its degradation and biological function.

© 2012 Li et al.; licensee BioMed Central Ltd This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Full list of author information is available at the end of the article

(See figure on previous page.)

Figure 1 Rapid degradation of Hax 1 is dependent on its PEST sequence. A. Schematic representation of a PEST sequence in Hax 1 protein. The PEST sequence was identified using Pestfind service on "emboss.bioinformatics.nl/cgi bin/emboss/pestfind". The PEST sequence in Hax 1 is conserved among different mammals. **B**. Chase time experiment of Hax 1 and other Bcl 2 proteins. H1299 cells treated with CHX (100 ug/ml) for different time points were harvested for immunoblot analysis using indicated antibodies. **C**. Data from three ndependent experiments in B were quantified. **D**. Similar experiments as B were carried out using mouse N2a cells. **E**. An EGFP tagged WT Hax 1 or Δ PEST Hax 1 was transiently transfected into H1299 cells. Forty eight hours later, CHX chase experiments were carried out. **F**. Quantificative analysis of data from E with three independent experiments.

Results

Rapid degradation of Hax-1

In addition to its BH domains and a trans-membrane domain, Hax-1 has a PEST sequence [1]. The PEST region in Hax-1 is highly conserved in mammalian animals (Figure 1A). We tested the degradation profile of Hax-1 using a cycloheximide (CHX) chase experiment in both human lung cancer cell line H1299 and mouse neuroblastoma cell line N2a. Hax-1 was found to have a much shorter half-life than other two pro-survival Bcl-2 family proteins, Bcl-2 and Bcl-xL (Figure 1B-D), suggesting that the Hax-1 protein is unstable and is rapidly degraded.

PEST sequence-dependent degradation of Hax-1

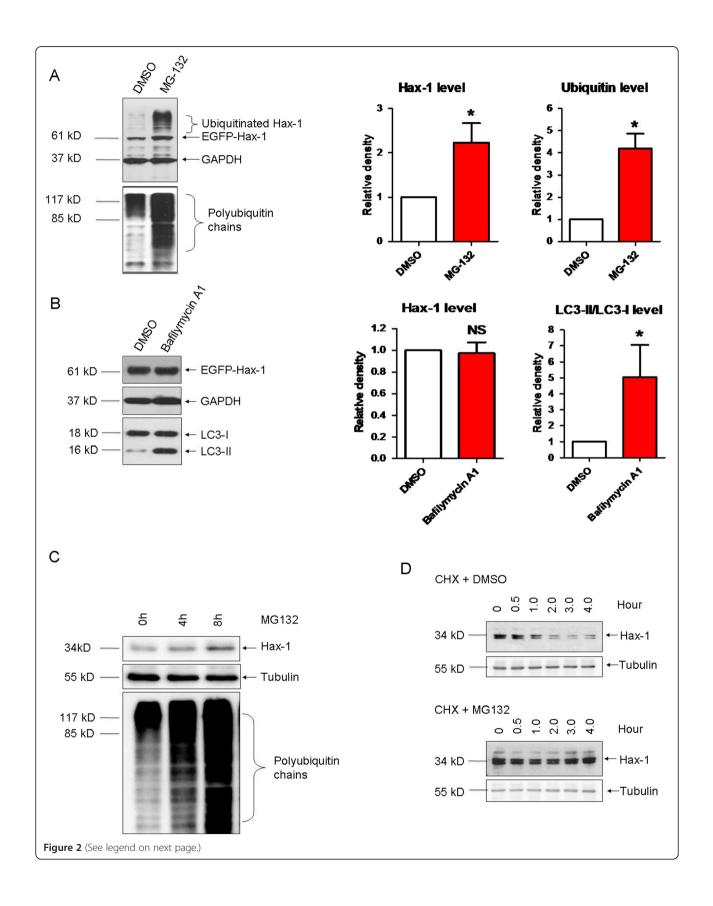
We next tested whether the PEST sequence in Hax-1 is responsible for its rapid degradation. A deletion mutant of Hax-1 was constructed in which the PEST sequence (aa 103–118) was deleted. The CHX chase experiments showed that the Δ PEST Hax-1 level remained largely unchanged up to 3 hours, whereas WT Hax-1 level rapidly decreased to < 50 % within 3 hours (Figure 1E and F), suggesting that the PEST sequence in Hax-1 is necessary for its rapid degradation.

Degradation of Hax-1 by the ubiquitin-proteasome pathway

Proteasome and autophagy systems are two main pathways for protein degradation. Here we tested which pathway is involved in the fast-turnover of Hax-1. Cells were treated with MG132, a proteasome inhibitor, or Bafilomycin A1, an autophagy inhibitor. The level of EGFP-Hax-1 increased in cells treated with MG132 for 3 hours (Figure 2A), whereas in cells treated with Bafilomycin A1 the protein level remained unchanged up to 18 hours (Figure 2B). These data suggest that Hax-1 is mainly degraded by the proteasome, but not by autophagy-lysosome pathway. A time-dependent increase in endogenous Hax-1 level was also observed in cells treated with MG132 (Figure 2C). We next examined the turnover of endogenous Hax-1 in the presence of MG132 using CHX chase experiments. In the presence of MG132, endogenous Hax-1 was not observed to be degraded within 4 hours, however, in the absence of MG132, it was rapidly degraded after two hours (Figure 2D).

Page 3 of 10

Hax-1 conjugation with K48-linked ubiquitin chains is dependent on the PEST sequence


We have shown that Hax-1 is degraded by the proteasome. Usually, the proteasomal degradation process requires polyubiquitination of the substrates [21]. We therefore tested if Hax-1 is ubiquitinated and if yes, what kind of ubiquitin conjugation is involved in the degradation of Hax-1. Enhanced ubiquitination of Hax-1 was observed in the presence of MG132 than that in the absence of MG132 (Figure 3A) as revealed by co-immunoprecipitation experiments. Then, we examined the polyubiquitin of Hax-1 with two specific antibodies which recognize K48- or K63-linked ubiquitin, respectively. Increased polyubiquitination of Hax-1 was detected with an antibody specific to K48-linked polyubiquitin, but not with that to K63-linked polyubiquitin (Figure 3B), suggesting that Hax-1 is mainly conjugated by the K48-linked ubiquitin chains. We next evaluated if the PEST sequence affects Hax-1 polyubiquitination. We found that the deletion of the PEST sequence in Hax-1 greatly decreased its polyubiquitination (Figure 3C), suggesting that the PEST sequence in Hax-1 is necessary for its ubiquitination.

Increased degradation of Hax-1 during apoptosis

As Hax-1 is known to be an anti-apoptotic protein, we hypothesized whether its degradation is regulated under apoptosis. We transfected H1299 cells with EGFP-Hax-1 and treated them with DMSO or staurosporine (STS), an inducer of apoptosis. In the absence of MG132, the amounts of Hax-1 protein decreased with increasing concentration of STS, however, in the presence of MG132, the trend was largely attenuated (Figure 3D and E), suggesting an accelerated degradation of Hax-1 by the proteasome under apoptosis.

ΔPEST Hax-1 mutant attenuated STS-induced cell death

As overexpression of Hax-1 has been shown to have an anti-apoptotic effect and also regulates mitochondria membrane potential [10], we examined the effects of knockdown of Hax-1 on STS-induced apoptosis. The efficacy of the siRNA against Hax-1 was evaluated (Figure 4A). STS induced significantly higher level of apoptosis in those cells in which Hax-1 levels were knocked down as compared to control cells. This

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/95533010134</u> <u>3011224</u>