CQ压缩机单元

仿真培训系统软件说明书

北京东方仿真软件技术有限公司

2009年1月

目 录

第一章 装 置 概 况
第一节 单元简介
1. 离心式压缩机工作原理
2. 离心式压缩机的喘振现象及防止措施
3. 离心式压缩机的临界转速
4. 离心式压缩机的结构
5.汽轮机的工作原理
第二节 工艺流程简述
1.CO2 流程说明
2.蒸汽流程说明
第三节 工艺仿真范围
第二章 主要设备列表
第三章 正常操作工艺指标
第四章 工艺报警及联锁系统
1.工艺报警及联锁说明
2.工艺报警及联锁触发值
第五章 工艺操作规程
第一节 冷态开车
第二节 正常停车
第六章 事故列表
第七章 仿真 DCS 画面

第一章 装置概况

第一节 单元简介

CO2压缩机单元是将合成氨装置的原料气 CO2经本单元压缩做工后送往下一工段 尿素合成工段,采用的是以汽轮机驱动的四级离心压缩机。其机组主要由压缩机主机、 驱动机、润滑油系统、控制油系统和防喘振装置组成。

1. 离心式压缩机工作原理

离心式压缩机的工作原理和离心泵类似,气体从中心流入叶轮,在高速转动的叶轮的作用下,随叶轮作高速旋转并沿半径方向甩出来。叶轮在驱动机械的带动下旋转,把所得到的机械能转通过叶轮传递给流过叶轮的气体,即离心压缩机通过叶轮对气体作了功。气体一方面受到旋转离心力的作用增加了气体本身的压力,另一方面又得到了很大的动能。气体离开叶轮后,这部分速度能在通过叶轮后的扩压器、回流弯道的过程中转变为压力能,进一步使气体的压力提高。

离心式压缩机中,气体经过一个叶轮压缩后压力的升高是有限的。因此在要求升压较高的情况下,通常都有许多级叶轮一个接一个、连续地进行压缩,直到最末一级出口达到所要求的压力为止。压缩机的叶轮数越多,所产生的总压头也愈大。气体经过压缩后温度升高,当要求压缩比较高时,常常将气体压缩到一定的压力后,从缸内引出,在外设冷却器冷却降温,然后再导入下一级继续压缩。这样依冷却次数的多少,将压缩机分成几段,一个段可以是一级或多级。

2. 离心式压缩机的喘振现象及防止措施

离心压缩机的喘振是操作不当,进口气体流量过小产生的一种不正常现象。当进口气体流量不适当地减小到一定值时,气体进入叶轮的流速过低,气体不再沿叶轮流动,在叶片背面形成很大的涡流区,甚至充满整个叶道而把通道塞住,气体只能在涡

流区打转而流不出来。这时系统中的气体自压缩机出口倒流进入压缩机,暂时弥补进口气量的不足。虽然压缩机似乎恢复了正常工作,重新压出气体,但当气体被压出后,由于进口气体仍然不足,上述倒流现象重复出现。这样一种在出口处时而倒吸时而吐出的气流,引起出口管道低频、高振幅的气流脉动,并迅速波及各级叶轮,于是整个压缩机产生噪音和振动,这种现象称为喘振。喘振对机器是很不利的,振动过分会产生局部过热,时间过久甚至会造成叶轮破碎等严重事故。

当喘振现象发生后,应设法立即增大进口气体流量。方法是利用防喘振装置,将压缩机出口的一部份气体经旁路阀回流到压缩机的进口,或打开出口放空阀,降低出口压力。

3. 离心式压缩机的临界转速

由于制造原因,压缩机转子的重心和几何中心往往是不重合的,因此在旋转的过程中产生了周期性变化的离心力。这个力的大小与制造的精度有关,而其频率就是转子的转速。如果产生离心力的频率与轴的固有频率一致时,就会由于共振而产生强烈振动,严重时会使机器损坏。这个转速就称为轴的临界转速。临界转速不只是一个,因而分别称为第一临界转速、第二临界转速等等。

压缩机的转子不能在接近于各临界转速下工作。一般离心泵的正常转速比第一临 界转速低,这种轴叫做刚性轴。离心压缩机的工作转速往往高于第一临界转速而低于 第二临界转速,这种轴称为挠性轴。为了防止振动,离心压缩机在启动和停车过程中, 必须较快地越过临界转速。

4. 离心式压缩机的结构

离心式压缩机由转子和定子两大部分组成。转子由主轴、叶轮、轴套和平衡盘等 部件组成。所有的旋转部件都安装在主轴上,除轴套外,其它部件用键固定在主轴上。 主轴安装在径向轴承上,以利于旋转。叶轮是离心式压缩机的主要部件,其上有若干 个叶片,用以压缩气体。 气体经叶片压缩后压力升高,因而每个叶片两侧所受到气体压力不一样,产生了方向指向低压端的轴向推力,可使转子向低压端窜动,严重时可使转子与定子发生摩擦和碰撞。为了消除轴向推力,在高压端外侧装有平衡盘和止推轴承。平衡盘一边与高压气体相通,另一边与低压气体相通,用两边的压力差所产生的推力平衡轴向推力。

离心式压缩机的定子由气缸、扩压室、弯道、回流器、隔板、密封、轴承等部件组成。气缸也称机壳,分为水平剖分和垂直剖分两种形式。水平剖分就是将机壳分成上下两部分,上盖可以打开,这种结构多用于低压。垂直剖分就是筒型结构,由圆筒形本体和端盖组成,多用于高压。气缸内有若干隔板,将叶片隔开,并组成扩压器和弯道、回流器。

为了防止级间窜气或向外漏气,都设有级间密封和轴密封。

离心式压缩机的辅助设备有中间冷却器、气液分离器和油系统等。

5. 汽轮机的工作原理

汽轮机又称为蒸汽透平,是用蒸汽做功的旋转式原动机。进入汽轮的高压、高温蒸汽,由喷嘴喷出,经膨胀降压后,形成的高速气流按一定方向冲动汽轮机转子上的动叶片,带动转子按一定速度均匀地旋转,从而将蒸汽的能量转变成机械能。

由于能量转换方式不同,汽轮机分为冲动式和反动式两种,在冲动式中,蒸汽只在喷嘴中膨胀,动叶片只受到高速气流的冲动力。在反动式汽轮机中,蒸汽不仅在喷嘴中膨胀,而且还在叶片中膨胀,动叶片既受到高速气流的冲动力,同时受到蒸汽在叶片中膨胀时产生的反作用力。

根据汽轮机中叶轮级数不同,可分为单极或多极两种。按热力过程不同,汽轮机可分为背压式、凝气式和抽气凝气式。背压式汽轮机的蒸汽经膨胀做功后以一定的温度和压力排出汽轮机,可继续供工艺使用;凝气式蒸汽轮机的进气在膨胀做功后,全部排入冷凝器凝结为水;抽气凝气式汽轮机的进气在膨胀做功时,一部分蒸汽在中间

抽出去作为其它用, 其余部分继续在气缸中做功, 最后排入冷凝器冷凝。

第二节 工艺流程简述

1.CO2 流程说明:

来自合成氨装置的原料气 CO2压力为 150Kpa (A), 温度 38℃, 流量由 FR8103 计量, 进入 CO2压缩机一段分离器 V-111, 在此分离掉 CO2气相中夹带的液滴后进入 CO2压缩机的一段入口, 经过一段压缩后, CO2压力上升为 0.38Mpa(A), 温度 194℃, 进入一段冷却器 E-119 用循环水冷却到 43℃, 为了保证尿素装置防腐所需氧气,在 CO2 进入 E-119 前加入适量来自合成氨装置的空气,流量由 FRC-8101调节控制, CO2气中氧含量 0. 25-0. 35%, 在一段分离器 V-119 中分离掉液滴后进入二段进行压缩, 二段出口 CO2压力 1.866Mpa(A),温度为 227℃。然后进入二段冷却器 E-120 冷却到 43℃,并经二段分离器 V-120 分离掉液滴后进入三段。

在三段入口设计有段间放空阀。便于低压缸 CO2压力控制和快速泄压,CO2经三段压缩后压力升到 8.046Mpa(A),温度 214℃,进入三段冷却器 E-121 中冷却。为防止 CO2 过度冷却而生成干冰,在三段冷却器冷却水回水管线上设计有温度调节阀 TV-8111,用此阀来控制四段入口 CO2温度在 50-55℃之间。冷却后的 CO2进入四段压缩后压力升到 15.5Mpa(A),温度为 121℃,进入尿素高压合成系统。为防止 CO2压缩机高压缸超压、喘振,在四段出口管线上设计有四回一阀 HV-8162 (即 HIC8162)。

2. 蒸汽流程说明:

主蒸汽压力 5.882Mpa. 湿度 450℃,流量 82t/hr ,进入透平做功,其中一大部分在透平中部被抽出,抽汽压力 2.598Mpa,温度 350℃,流量 54.4t/hr ,送至框架,另一部分通过中压调节阀进入透平后汽缸继续做功,做完功后的乏汽进入蒸气冷凝系统。

第三节 工艺仿真范围

1. 工艺范围

二氧化碳压缩、透平机、油系统

2. 边界条件

所有各公用工程部分:水、电、汽、风等均处于正常平稳状况。

3. 现场操作

现场手动操作的阀、机、泵等,根据开车、停车及事故设定的需要等进行设计。 调节阀的前后截止阀不进行仿真。

第二章 主要设备列表

1.CO2 气路系统: E-119、E-120、E-121、V-111、V-119、V-120、V-121、K-101。

- 2. 蒸气透平及油系统: DSTK-101 油箱、油温控制器、油泵、油冷器、油过滤器、盘车油泵、稳压器、速关阀、调速器、调压器。
- 3. 设备说明(E: 换热器; V: 分离器)

流程图位号	主要设备	
U8001	E-119 (CO2一段冷却器),	
	E-120 (CO2二段冷却器),	
	E-121 (CO2二段冷却器),	
	V-111 (CO2一段分离器),	
	V-120 (CO2二段分离器),	
	V-121 (CO2三段分离器)	
	DSTK-101(CO2压缩机组透平)	
U8002	DSTK-101	
	油箱、油泵、油冷器、油过滤器、盘车油泵	

4. 主要控制阀列表

位号	说明	所在流程图位号
FRC8103	配空气流量控制	U8001
LIC8101	V111液位控制	U8001
LIC8167	V119液位控制	U8001
LIC8170	V120液位控制	U8001
LIC8173	V121液位控制	U8001
HIC8101	段间放空阀	U8001
HIC8162	四回一防喘振阀	U8001
PIC8241	四段出口压力控制	U8001
HS8001	透平蒸汽速关阀	U8002
HIC8205	调速阀	U8002
PIC8224	抽出中压蒸汽压力控制	U8002

第三章 正常操作工艺指标

表位号	测量点位置	常值	单位	备注
TR8102	CO2原料气温度	40	\mathbb{C}	
TI8103	CO2压缩机一段出口温度	190	\mathbb{C}	
PR8108	CO2压缩机一段出口压力	0. 28	MPa(G)	
TI8104	CO2压缩机一段冷却器出口温度	43	$^{\circ}$ C	

FRC8101	二段空气补加流量	330	Kg/h
FR8103	CO2吸入流量	27000	Nm3/h
FR8102	三段出口流量	27330	Nm3/h
AR8101	含氧量	0. 25~0. 3	%
TE8105	CO2压缩机二段出口温度	225	$^{\circ}$ C
PR8110	CO2压缩机二段出口压力	1.8	Mpa (G)
TI8106	CO2压缩机二段冷却器出口温度	43	$^{\circ}$ C
TI8107	CO2压缩机三段出口温度	214	$^{\circ}$ C
PR8114	CO2压缩机三段出口压力	8. 02	Mpa (G)
TIC8111	CO2压缩机三段冷却器出口温度	52	℃
TI8119	CO2压缩机四段出口温度	120	℃
PIC8241	CO2压缩机四段出口压力	15. 4	Mpa (G)
PIC8224	出透平中压蒸汽压力	2. 5	Mpa (G)
Fr8201	入透平蒸汽流量	82	T/h
FR8210	出透平中压蒸汽流量	54. 4	t/h
TI8213	出透平中压蒸汽温度	350	℃
TI8338	CO2压缩机油冷器出口温度	43	$^{\circ}$ C
PI8357	CO2压缩机油滤器出口压力	0. 25	MPa(G)
PI8361	CO2控制油压力	0. 95	MPa (G)

	压缩机转速	6935	rpm	
XI8001	压缩机振动	0. 022	mm	
GI8001	压缩机轴位移	0. 24	mm	

第四章 工艺报警及联锁系统

1. 工艺报警及联锁说明:

为了保证工艺、设备的正常运行,防止事故发生,在设备重点部位安装检测装置 并在辅助控制盘上设有报警灯进行提示,以提前进行处理将事故消除。

工艺联锁是设备处于不正常运行时的自保系统,本单元设计了两个联锁自保措施:

A: 压缩机振动超高联锁 (发生喘振):

动作: 20 秒后(主要是为了方便培训人员处理)自动进行以下操作:

关闭透平速关阀 HS8001、调速阀 HIC8205、中压蒸汽调压阀 PIC8224;

全开防喘振阀 HIC8162、段间放空阀 HIC8101

处理: 在辅助控制盘上按 RESET按钮,按冷态开车中暖管暖机冲转开始重新开车 B: 油压低联锁:

动作: 自动进行以下操作:

关闭透平速关阀 HS8001、调速阀 HIC8205、中压蒸汽调压阀 PIC8224;

全开防喘振阀 HIC8162、段间放空阀 HIC8101

处理:找到并处理造成油压低的原因后在辅助控制盘上按 RESET按钮,按冷态开车中油系统开车起重新开车

工艺报警及联锁触发值

位号	检测点	触发值
PSXL8101	V111压力	≤0.09Mpa
PSXH8223	蒸汽透平背压	≥2.75Mpa
LSXH8165	V119液位	≥85%
LSXH8168	V120液位	≥85%
LSXH8171	V121液位	≥85%
LAXH8102	V111液位	≥85%
SSXH8335	压缩机转速	≥7200rpm
PSXL8372	控制油油压	≤0.85Mpa
PSXL8359	润滑油油压	≤0.2Mpa
PAXH8136	CO2四段出口压力	≥16.5Mpa
PAXL8134	CO2四段出口压力	≤14.5Mpa
SXH8001	压缩机轴位移	≥0.3mm
SXH8002	压缩机径向振动	≥0.03mm
振动联锁		XI8001≥0.05mm或
		GI8001≥0.5mm (20S 后触
		发)
油压联锁		PI8361 ≤0.6Mpa
辅油泵自启动联锁		PI8361 ≤0.8Mpa

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/95813007301 0006106