
2010-2023 历年山东省潍坊市高三第一次模拟考试化学试卷 (带解析)

第1卷

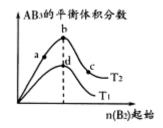
一. 参考题库(共 20 题)

1.短周期元素 A、B、C 的位置如图所示,已知 B、C 两元素的原子序数之和是 A 元素的 4 倍,则 A、B、C 依次是

A. Be, Na, Al

B. C, Al, P

C. O, P, Cl


D. B. Mg. Si

- 2.下列叙述正确的是
- A. 汽油、柴油和植物油都是碳氢化合物
- B. 乙醇可以被氧化为乙酸, 二者都能发生酯化反应
- C. 甲烷、乙烯和苯在工业上都可通过石油分馏得到
- D. 向鸡蛋清溶液中加人 (NH₄)₂SO₄ 或 CuSO₄ 都能使鸡蛋清析出, 其作用原理相同
- 3. 氰化物有剧毒, 在碱性条件下可用如下方法进行处理:

2CN⁻+8OH⁻ +5Cl₂=2CO₂+N₂+10Cl⁻+4H₂O。下列判断错误的是

A. 上述反应中的氧化剂是 Cl_2

- C. 当有 $0.2^{\text{mol CO}_2}$ 生成时,溶液中阴离子的物质的量增加 1^{mol}
- D. 经测定 NaCN 的水溶液呈碱性,说明 CNT 促进了水的电离
- 4.常温下,取0.2mol·L⁻¹HX溶液与0.2mol·L⁻¹NaOH 溶液等体积混合(忽略混合后溶液体积的变化),测得混合溶液的 pH=8,则下列说法(或关系式)正确的是
- A. $c(Na^+)-c(X^-)=9.9\times10^{-7} \text{mol} \cdot L^{-1}$
- B. $c(Na^+)=c(X^-)+c(HX)=0.2mol \cdot L^{-1}$
- C. $c(OH^-)-c(HX)=c(H^+)=1\times10^{-6}\text{mol}\cdot\text{L}^{-1}$
- D. 混合溶液中由水电离出的 $^{c(OH^{-})=10^{-8}mol\cdot L^{-1}}$
- 5.下列有关物质的性质或用途的说法中,正确的是
- ① 氯气具有漂白性,可以直接使有色布条褪色;② 二氧化硫具有较强的还原性
- ,不能用浓硫酸干燥;③ Zn 具有还原性和导电性,可用作锌锰干电池的负极材料;
- (4) A1(OH); 是两性氢氧化物,能溶于强酸或强碱。
- A. (1)(2)(3)
- B. 234
- C. (3)(4)
- D. 124
- 6.某化学小组研究在其他条件不变时, 改变密闭容器中某一条件对 $^{A_2(g)+3B_2(g)}$ $^{2AB_3(g)}$ 化学平衡状态的影响, 得到如下图所示的曲线(图中 T 表示温度, n 表示物质的量)下列判断正确的是

- A. 在 T_2 和 $^{n(A_2)}$ 不变时达到平衡, AB_3 的物质的量大小为:c>b>a
- B. 若 $^{T_2} > ^{T_1}$,则正反应一定是放热反应
- C. 达到平衡时 A_2 的转化率大小为: b>a>c
- D. 若 $^{T_2} > ^{T_1}$, 达到平衡时 b、d 点的反应速率为 $^{\nu_d} > ^{\nu_b}$
- 7.本题包括 A、B 两小题, 请选定其中一小题并在相应的答题区域内作答。若多做,则按 A 小题评分。

A. 【物质结构与性质】

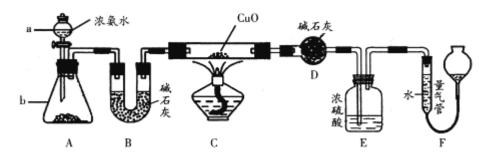
元素 H、C、N、O、F 都是重要的非金属元素, Fe、Cu 是应用非常广泛的金属。

- (1) Fe 元素基态原子的核外电子排布式为_______
- (2) C、H 元素形成的化合物分子中共有 16 个电子,该分子中σ键与π键的个数比为__
 - (3) C、N、O 三种元素的第一电离能由大到小的顺序为(用元素符号表示)
- (4) 在测定 HF 的相对分子质量时,实验测得值一般高于理论值,其主要原因是_____
- (5) C、N 两元素形成的化合物 $^{\text{C}_3\text{N}_4}$ 形成的原子晶体,结构类似 金刚石,甚至硬度超过金刚石,其原因是_____。
 - (6) 右图为石墨晶胞结构示意图,该晶胞中含有 C 原子的个数为__。

B. 【有机化学基础】

扑热息痛(学名对乙酸氨基酚)是生活中常用到的一种解热镇痛药。以苯为原料 合成扑热息

痛的部分转化如下:


请回答下列问题:

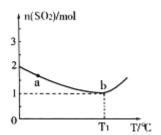
- (1) B→C 的反应类型为____, D中官能团的名称为____。
- (2) C 的结构简式为_____。
- (3)1mol 扑热息痛与足量 NaOH 溶液反应,理论上消耗 NaOH 的物质的量为___mol。
 - (4) 实验证明 B 能够与溴水反应, 试写出其反应的化学方程式____。
- (5) 扑热息痛有多种同分异构体,同时符合下列要求的同分异构体有__种。
- ①苯环上有两个对位取代基;②同于氨基酸。
- 8.下列说法正确的是
- A. 淀粉、纤维素等高分子化合物均属于纯净物
- B. 金属氧化物都是碱性氧化物
- C. 食醋、纯碱、食盐分别属于酸、碱、盐
- D. 丁达尔效应可用于区别溶液与胶体

- 9.下列离子方程式正确的是
- A. 钠与水反应 Na+2H₂O=Na⁺+2OH⁻+H₂↑
- B. 用食醋除去热水瓶胆中 $Mg(OH)_2$ 水垢 $2H^++Mg(OH)_2=Mg^{2+}+2H_2O$
- C. 将少量 SO₂ 气体通入 NaClO溶液中SO₂ +2ClO +H₂O=SO₃ 2- +2HClO
- D. 在硫酸氢钾溶液中加人氢氧化钡溶液至 pH = 7

$$Ba^{2+} + 2OH^{-} + 2H^{+} + SO_{4}^{2-} = BaSO_{4} \downarrow + 2H_{2}O$$

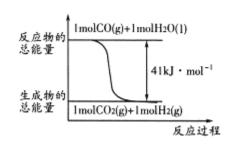
10.某课外活动小组欲利用 CuO 与 NH 3 反应,研究 NH 3 的某种性质并测定其组成,设计了如下实验装置(夹持装置未画出)进行实验。请回答下列问题:

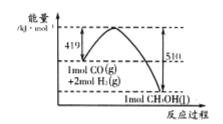
- (1) 仪器 a 的名称为 ; 仪器 b 中可选择的试剂为 。
- (2) 实验室中, 利用装置 A, 还可制取的无色气体是 (填字母)
- A. C1₂
- B. O₂
- C. CO₂
- D. NO_2
- - (4) E 装置中浓硫酸的作用______
 - (5) 读取气体体积前,应对装置 F 进行的操作:_____


- (6) 实验完毕,若测得干燥管 D 增重 mg ,装置 F 测得气体的体积为 nL (已折算成标准状况),则氨分子中氮、氢的原子个数比为_____(用含 m 、 n 字母的代数式表示)。
- 11.在下列溶液中,各组离子一定能够大量共存的是
- A. 能使广泛 pH 试纸显蓝色的溶液: K⁺、 Ba²⁺、 Cl 、 Br⁻

$$\frac{c(H^+)}{c(OH^-)} = 10^{12}$$

B. 常温下 $\frac{c(OH^-)}{c(OH^-)}$ 的溶液: Fe^{2+} 、 Mg^{2+} 、 NO_3^- 、 $C1^-$


- C. 含有大量Al³⁺的溶液: Na⁺、Cl⁻、[Al(OH)₄]、OH⁻
- D. 能使淀粉碘化钾试纸显蓝色的溶液: K^+ 、 SO_4^2 、 S^2 、 SO_3^2
- 12.一种基于酸性燃料电池原理设计的酒精检测仪,负极上的反应为: ${\rm CH_3CH_2OH-4e^-+H_2O=CH_3COOH+4H^+} \\ {\rm 下列有关说法正确的是}$
- A. 检测时, 电解质溶液中的 H 向负极移动
- C. 电池反应的化学方程式为: CH3CH2OH+O2=CH3COOH+H2O
- D. 正极上发生的反应为: O₂ + 4e⁻+2H₂O=4OH⁻
- 13.在 5 mL 0.1 mol·L¹KI 溶液中滴加 0.1 mol·L¹FeC13 溶液 5~6 滴后, 再进行下列实验
- ,其中可证明^{FeCl}₃和 KI 的反应是可逆反应的实验(含现象)是
- A. 滴加 AgNO3 溶液,观察有黄色沉淀产生
- B. 加^{CC1}4振荡后,下层液体为浅紫色
- C. 加人^{CC1}4振荡,下层液体为浅紫色;取上层清液,滴加^{AgNO}3溶液,有白色 沉淀产生
- D. 加入 $^{\text{CCl}_4}$ 振荡后,下层液体为淡紫色;取上层清液,滴加 $^{\text{KSCN}}$ 溶液,溶液显红色


- 14.化学在生产和日常生活中有着重要的应用。下列说法错误的是
- A. 凡含有食品添加剂的食物对人体健康均有害, 不可食用
- B. 锅炉中沉积的^{CaSO}4可用^{Na₂CO}3溶液浸泡后再用酸溶解去除
- C. 被酸雨污染的农田及湖泊可撒石灰石粉末,减轻其危害
- D. 纯碱可用于生产普通玻璃, 日常生活中也可用纯碱溶液来除去物品表面的油污
- $15.以^{N_A}$ 表示阿伏加德罗常数,下列说法正确的是
- A. 常温常压下, $46g^{NO_2}$ 与 N_2O_4 的混合气体中含有的原子数为 3^{N_A}
- B. 15.6g Na₂O₂与过量^{CO₂}反应时,转移的电子数为 0.4^{N_A}
- C. 常温常压下,11.2L 二氧化硫中所含的氧原子数等于 N_A
- D. 1L 1 mol·L·1 的Na₂CO₃溶液中含有N_A个CO₃2-
- 16.为改善空气质量而启动的"蓝天工程"得到了全民的支持。下列措施不利于"蓝天工程"建设的是
- A. 推广使用燃煤脱硫技术, 防治 SO₂污染
- B. 加大石油、煤炭的开采力度,增加化石燃料的供应量
- C. 研制开发燃料电池汽车,减少机动车尾气污染
- D. 实施绿化工程, 防治扬尘污染
- 17.研究化学反应原理对于生产、生活及环境保护具有重要意义。

(1) 工业制硫酸的过程中存在反应: $^{2SO_2(g)+O_2(g)}$ $^{2SO_3(g)}$ 3 6 6 C时,将 2mol SO_2 和 1.5 6 mol O_2 充入 2L 密闭容器中发生上述反应,容器中 SO_2 的物质的量随温 度变化的曲线如图所示。

- ①图中 a 点的正反应速率____(填写">""<"或
- "=") 逆反应速率。
- (2)下列条件可以证明上述反应已经达到化学平衡状态的是 (填写序号)
- a. 单位时间内消耗 1mol O₂, 同时生成 2mol SO₃
- b. 容器内^{SO₂}、^{O₂}、^{SO₃}的浓度之比为 2:1:2
- c. 容器内压强保持不变
- d. 混合气体的平均相对分子质量保持不变
- ③ I_1 °C时,上述反应的化学平衡常数 K=____。
- (2) 碳酸铵是一种常用的铵态氮肥,其水溶液显碱性,其原因是_;溶液中离子浓度关系为 $c(NH_4^+)+c(H^+)=$ 。
- (3) 治理水体重金属离子污染时,首先投入沉淀剂将重金属离子转化为难溶悬浮物,然后再投入氯化铝将污水中的悬浮物除去,从而净化水体,氯化铝的作用是________(用离子方程式表示)。
- 18.甲醇(^{CH3OH})是重要的能源物质,研究甲醇具有重要意义。
- (1) 利用工业废气中的 CO_2 可制取甲醇,其反应为: $^{CO_2+3H_2}$ $^{\text{催化剂}}$ $^{CH_3OH+H_2O}$ 常温常压下已知下列反应的能量变化如图所示:

写出由二氧化碳和氢气制备甲醇的热化学方程式:_____

(2)为提高甲醇燃料的利用率,科学家发明了一种燃料电池,电池的一个电极通入空气,另一个电极通入甲醇气体,电解质是掺入了 Y_2O_3 的 Z_{TO_2} 晶体,在高温下它能传导 O^2 离子。电池工作时正极反应为

若以该电池为电源,用石墨做电极电解 100mL 含有如下离子的溶液。

离子	Cu ²⁺	Η⁺	Cl-	SO42-
c ∕mol • L ⁻¹	1	4	4	1

电解一段时间后,当两极收集到相同体积(相同条件)的气体时(忽略溶液体积的变化及电极产物可能存在的溶解现象)阳极上收集到氧气的物质的量为 mol。

- (3) 甲醇对水质会造成一定的污染,有一种电化学法可消除这种污染,其原理是:通电后将^{Co²⁺}氧化成^{Co³⁺},然后以^{Co³⁺}做氧化剂把水中的甲醇氧化成^{CO}2而净化。实验室用下图装置模拟上述过程:
- ①写出阳极电极反应式_____;
- ②除去甲醇的离子反应为: ^{6 Co³⁺+CH₃OH+H₂O = CO₂ ↑+6 Co²⁺+6 H⁺, 该过程中被氧化的元素是_____, 当产生标准状况下 2.24L ^{CO₂}时, 共转移电子___mol。}

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/967112051154010003