

中华人民共和国国家标准

GB/T 16145—2020 代替 GB/T 16145—1995

生物样品中放射性核素的¥ 能谱分析方法

G ammaspectrometrymethodofanalysingradionuclidesinbiologicalsamples

2020-04-28 发布

2020-1 1-01 实施

国家市场监督管理总局 国家标准化管理委员会 ^{发 布}

目 次

前言	Ш
1 范围	. 1
2 术语和定义	. 1
3 仪器设备	. 1
4 γ能谱仪的能量刻度	• 2
5 γ能谱仪的效率刻度	. 3
6	. 5
7 样品γ谱分析	. 7
8 不确定度评定	. 8
9 样品分析结果报告	. 9
附录 A(资料性附录) 能量刻度用的单能和多能核素	10
附录 B(资料性附录) 测量低活度样品用的塑料样品盒	11
附录 C(资料性附录) 样品 自吸收修正方法	13
附录 D(资料性附录) 级联辐射引起的符合相加修正	17
附录 E(资料性附录) 生物样品的干样比、灰样比和灰化时着火的临界温度范围	20
附录 F(资料性附录) 生物样品γ能谱分析方法中存在的可能干扰核素及γ射线	22
附录 G(资料性附录) 生物样品 γ 谱分析中不确定度评定方法举例	25
附录 H(资料性附录) 判断限和探测限	30
参考文献	32

前 言

本标准按照 GB/T 1.1—2009 给出的规则起草。

本标准代替 GB/T 16145—1995《生物样品中放射性核素的γ能谱分析方法》。 本标准与 GB/T 16145—1995 相比,主要技术变化如下:

➡ 删除了 "Ge(Li)和 NaI(TI)探测器"的方法规定和表述(见 1995 年版的第 1 章);

- 一增加了术语和定义的引导语,以及"能量刻度""效率刻度"和"相对探测效率"的术语和定义(见 第 2 章);
- 一增加了无源效率刻度软件的要求(见3.5);
- 一增加了"能量刻度用的单能和多能核素" (见附录 A);
- 一修改了"测量低活度样品用的塑料样品盒"部分内容和有关参数(见附录 B, 1995 年版的附录
 D);
- 修改了"样品 自吸收修正方法"γ射线的质量减弱系数的内容(见附录 C, 1995 年版的附录 C);
 修改了"级联辐射引起的符合相加修正"部分参数表示形式(见附录 D, 1995 年版的附录 B);
- 一修改了"生物样品的采集和预处理"内容,增加了干粉样制备方法和干鲜比信息(见附录 E, 1995 年版的附录 A);

一增加了"生物样品γ能谱分析方法中存在的可能干扰核素及γ射线"(见附录 F);
 一增加了不确定度评定方法举例有关内容(见附录 G);

- ──修改了"判断限和探测限"部分参数表示形式(见附录 H, 1995 年版的附录 J);──删除了"谱数据的平滑与峰位确定"(见 1995 年版的附录 E);
- --删除了"峰面积分析方法"(见 1995 年版的附录 F);
- ---删除了"剥谱法" (见 1995 年版的附录 G);
- ---删除了"联立方程组解谱法" (见 1995 年版的附录 H);

本标准起草单位:中国疾病预防控制中心辐射防护与核安全医学所、浙江省疾病预防控制中心、中 国计量科学研究院、新疆维吾尔自治区疾病预防控制中心、烟台出入境检验检疫局、四川省疾病预防控 制中心。

生物样品中放射性核素的γ能谱分析方法

1 范围

本标准规定了用高纯锗(HPGe) / 能谱仪分析生物样品中 / 放射性核素活度的方法。

本标准适用于生物样品中 / 放射性核素活度的测量。除了采样、制样外,本标准规定的 / 能谱分 析方法也适用于其他非生物样品。其他类型的 / 能谱仪可参照执行。

2 术语和定义

下列术语和定义适用于本文件。

2.1

生物样品 biologicalsample

根据生物监测需要采集的、具有代表性的、作为检测样品的生物材料。

注:本标准所指生物样品包括粮食作物、蔬菜、茶叶、牧草、牛奶、菌菇类、家畜、家禽、指示性野生动植物等陆生动植物及食品,海洋或淡水中的浮游生物、水底生物、藻类等水生生物,以及人和动物的组织、血液和排泄物等。

2.2

能量刻度 energy calibration

用能量刻度源确定谱仪系统 >>射线能量和道址间的对应关系的过程。

2.3

效率刻度 efficiencycalibration

建立给定测量条件下 〉射线能量与其全能峰探测效率的对应关系的过程。

2.4

相对探测效率 relativedetectionefficiency

在探测器探头前表面距离为 25 cm 处, HPGe 探测器与标准的圆柱形 NaI(TI) 闪烁晶体($\phi \times h$: 7.62 cm x 7.62 cm)探测器测量 60 Co 源 1 33249 keV 分射线的全能峰峰面积的比值。

- 3 仪器设备
- 3.1 y能谱仪

у∕能谱仪由探测器、前置放大器、主放大器、脉冲幅度分析器、高压电源、谱数据分析处理系统等部件组成。

3.2 探测器

使用高纯锗探测器时,探测器的相对探测效率应不小于 20%。对⁶⁰ Co 1 332.49 keV 广射线的能量分辨率应小于 2.5 keV。脉冲幅度分析器的道址应不小于 4 096 道。

3.3 探测器屏蔽室

一般选用低放射性的铅或钢铁等金属作屏蔽物质,壁厚为 10 cm~15 cm 铅材料,内腔大小一般为 40 mx40 mx50 m% mx80 mx100 m(或内腔容积近似的圆柱形)。适宜时屏蔽室内壁从外

向里依次可衬有厚度不小于 1.6 mm 的镉、不小于 0.4 mm 的铜或锡以及厚度为 2 mm~3 mm 的有机 玻璃。

3.4 谱分析软件

γ能谱仪分析软件应配有数据获取、自动寻峰、峰面积分析、能量刻度、效率刻度及核素定性、定量 分析功能。

3.5 无源效率刻度软件

适宜时可对谱仪配备无源效率刻度软件,无源效率刻度软件包含所用高纯锗探测器的特有表征参数,并且能与谱分析软件结合使用。使用无源效率刻度软件时应采用可溯源的实际标准源进行验证,无 源效率刻度结果与效率刻度源实测相对偏差一般应控制在 15%以内。

3.6 试剂

选用分析纯的酸(HNO3、HCl)、络合剂或稳定性同位素载体等,用于防止放射性核素在样品预处 理过程中挥发损失或被容器吸附。

3.7 标准物质

适用于谱仪能量和效率刻度用的标准物质中的所用核素通常是²¹⁰ Pb、²⁴¹ Am、¹⁰⁹ Cd、⁵⁷ Co、¹⁴¹ Ce、 ⁵¹ Cr、¹³⁷ Cs、⁵⁴ Mn、²² Na、⁸⁸ Y、⁶⁰ Co、¹⁵² EL等。标准物质的核素活度扩展不确定度应不超过 5%(*k*=2)。 适于能量刻度的单能和多能核素及其主要参数参见附录 A 。在进行能量刻度、效率刻度和测量时需注 意能量、发射几率及半衰期参数来源统一。

3.8 样品盒

根据测量样品的体积和探测器的形状、大小,选择不同形状和尺寸的样品盒。样品盒应由天然放射 性核素含量低、无人工放射性污染的材料制成。适合测量低活度样品用的两种常用典型样品盒参见附 录 B。

4 γ能谱仪的能量刻度

4.1 能量刻度源

γ能谱仪能量刻度用的标准物(以下简称能量刻度源)的放射性核素所发射的γ射线的能量应均匀 分布在所需刻度的能区(通常为 40 keV~2 000 keV),且最少需要 4 个能量点。

4.2 能量刻度范围

刻度的能区范围(脉冲幅度分析器满量程)可通过调节系统的增益来完成。如果所分析的能区为 40 keV~2 000 keV,应调节系统增益,使¹³⁷Cs的661.66 keVγ射线的全能峰峰位大约在多道分析器满 量程的1/3处。若多道分析器取8192道,则该峰位约在3000道附近。

4.3 能量刻度谱的获取

谱仪系统调至合适的工作状态并待稳定后,将能量刻度源置于探测器适当位置,获取一个至少包含 均匀分布于整个能区的 4 个孤立峰的γ谱,记录刻度源的特征γ射线能量和相应的全能峰峰位。

4.4 能量刻度曲线的确定

4.4.1 能量刻度曲线拟合

采用谱分析软件获得全能峰峰位,确定峰位和能量之间的关系,用谱分析软件进行 /射线能量与 全能峰峰位的直线拟合。处于良好工作状态的高分辨 /能谱系统的能量刻度曲线应是一条直线。

4.4.2 能量刻度曲线的计算方法

能量刻度曲线也可以用手动的方式进行计算拟合,假定峰位(道址)和能量之间关系满足式(1):

式中: **E** / 新线能量,单位为千电子伏(keV); **a** - (**a**,**a**,....,**a**) 拟合常数;

P-全能峰所在道址。

利用式 (1)对已知的峰位和能量做最小二乘法拟合,确定系统 a 0, a 1, ……, an。通常取一次或二次 多项式做拟合即可。

4.4.3 刻度曲线的核查

在样品测量期间,每天应至少用 2 个能量点的 / 射线对谱仪进行检查,所用 / 射线的能量应分别 靠近刻度能区的低能端和高能端。如果峰位基本保持不变,则刻度数据保持适用。若多道分析器取 8 192道,要求对⁶⁰Co的 1 332.49 keV / 射线的全能峰置于 5 000 道附近时,24 h 内峰位漂移应不超过 2 道。

5 y能谱仪的效率刻度

5.1 效率刻度源

冫能谱仪效率刻度用的标准物(以下简称效率刻度源)原则上要选择与待测样品的几何形状和大小 完全相同、基质一样或类似(或质量密度相等或相近)、核素含量和 ン射线能量已知,以及源容器材料和 样品容器材料相同。效率刻度源的放射性核素总活度应小于 1 000 kBq,能量分布应该适当,用于效率 曲线刻度时的能量点应该分布在 40 keV~2 000 keV能区内,选择至少 7 个能量的 ン射线。

5.2 效率刻度谱的获取

将谱仪系统调至合适工作状态并待稳定后,把效率刻度源置于与样品测量时几何条件完全相同的 位置上获取刻度 /谱,并使 /谱中用于刻度的全能峰净面积计数统计引入的扩展不确定度不超过 1%(**K=2**)。 其全能峰净面积计数统计引入的标准不确定度,,的计算见式(2):

3

式中:

μ —标准不确定度;

- N s 全能峰净面积计数;
- Nb —相应全能峰的本底净面积计数;
- *t* s⁻⁻⁻⁻⁻样品测量时间,单位为秒(s);
- t ━━━本底测量时间,单位为秒(s)。

5.3 y射线全能峰探测效率刻度

5.3.1 刻度的一般程序

刻度的一般程序如下:

- a) 以效率刻度源谱获取时间归一,求得归一后的基体本底谱(简称基体本底归一谱);
- b) 从效率刻度源谱中扣除基体本底归一谱,求得刻度核素的净谱;
- c) 从净谱中选择该核素的非级联的特征γ射线的全能峰,并求得其净峰面积;
- d) 计算所选特征γ射线的全能峰净峰面积与在获取效率刻度源谱同一时间间隔内效率刻度源中 发射的该能量的γ射线总数的比值即为该能量γ射线的全能峰探测效率;
- e) 如果所选特征v射线是级联辐射,在计算净峰面积时,应对级联辐射的相加效应做出修正;
- f) 拟合探测效率与γ射线能量之间的关系曲线,此曲线即为效率刻度曲线。

5.3.2 效率曲线拟合

对于待测样品与效率刻度源的几何形状、性状等相同,只是核素或γ射线能量不同的情况,γ射线 全能峰探测效率刻度可用全能峰效率曲线法:

- a) 用在 40 keV~2 000 keV 能区内,至少选择 7 个能量的孤立γ射线能峰,并计算它们的全能峰 探测效率ερ,γ (*E*_y);
- b) 用谱分析软件或在双对数坐标纸上完成γ射线全能峰探测效率ε p, γ (E_{γ}) 与 γ射线能量 E_{γ} 的 关系曲线拟合, 即γ射线全能峰效率刻度曲线。一般的拟合函数采用式(3)计算:

式中:

 E_{γ} — γ 射线对应的能量,单位为千电子伏(keV);

*ε*ρ,γ(*E*_V) *C* 探测器对能量为 *E* 的 γ射线的全能峰探测效率;

ai — 拟合常数;

₭ — 多项式的最高阶次, k≤m-1,m为相应能区内参加曲线拟合的实验效率点的数目。

在双对数坐标纸上得到的全能峰效率曲线形状如图 1 所示。曲线常常分两段拟合,大约在 150 keV~300 keV处有个 "拐点" *E*c,对γ能量*E* < *E*c 的低能段,当实验效率点≥6 个时,式(3) 中拟合 阶数*k*可取 3;当有 3 个~5 个实验效率点时,式(3) 中拟合阶数 *k*可取 2 。对 *E* > *E*c 的高能段,当有 3 个~5 个实验效率点时,式(3)中拟合阶数*k*取 2;当有 6 个或 7 个实验效率点时,式(3) 中拟合阶数 *k* 可取 3;当大于 8 个实验效率点时,式(3)中拟合阶数*k*可取 4 。推荐采用系统自带的谱分析软件做γ射 线能量与全能峰效率的拟合。

5.4 探测效率刻度的修正

5.4.1 当效率刻度源与样品的装样量或密度间差异较大时,应对效率刻度做出修正,特别是在能量低于 200 keV 的特征γ射线核素活度分析时,密度差异不能忽略。相对自吸收修正方法参见附录 C。

5.4.2 如果使用的效率刻度源中某种核素具有级联γ辐射,而且γ谱是在效率刻度源距离探测器较近 情况下获取的,则用于计算效率的峰面积应做符合相加修正,参见附录 D。

5.4.3 当 自 己制备效率刻度源时,使用的基质中固有的放射性核素(通常是天然放射性核素)与加入的标准源溶液或标准物质的γ能量一样或相近,应考虑它们对刻度谱峰面积的影响。一般可以用制作效率刻度源的基质单独制作一个"空白"本底样,并在同样条件下获取其本底γ谱,然后从刻度谱峰面积中或者直接从刻度谱中扣除本底。

5.4.4 对反康普顿γ能谱仪系统的全能峰效率刻度,应特别注意级联γ辐射核素的相应全能峰面积处 理。通常可以利用其同时获取的非反符合谱中相应峰面积,经符合相加修正后,再计算全能峰探测 效率。

6 样品的采集制备和γ谱获取

6.1 采集制备原则

采集的样品应具有代表性,样品量和预处理原则应便于γ能谱分析。生物样品在采集时,要根据 监测或研究的目的、采集对象和其特定场所特征、预计核素的可能浓度和分布、谱仪的探测下限等多种 因素,确定采样方法、数量、时间、频度以及样品的预处理方法。样品保存、运输和预处理应避免放射性 损失和污染。

样品制备方法应根据实际使用的谱仪类型、数据处理方法、实验分析目的等具体情况选择。 在不影响检测 目的所要求的测量精度的情况下,尽量减少处理步骤,缩短环节,采用简单的方法,以最大限度避免处理过程引入的影响结果准确度的因素(如核素丢失、引入污染)。可以选择的制备方法包括鲜样制

备法、干样制备法和灰样制备法。 常见生物样品的干样比和灰样比参见附录 E 的表 E.1 和表 E.2 。灰 化初始着火温度参见表 E.3 。

6.2 采集样品量的确定

生物样品需采集多少样品量(W),可采用式(4)来估算:

式中:

₩ — 采集样品重量或体积,单位为千克(kg)或升(L);

Nm-在 T 时间内, 谱仪可测量到的最小计数率, 通常指核素特征峰面积计数率, 单位为每秒

 $(s^{-1});$

Ab ——样品定量分析的最小活度浓度,单位为贝可每千克(Bq/kg)或贝可每升(Bq/L);

f ——被测量样品所占采样量份额(包括干样比和灰样比,参见表 E.1 和表 E.2);

E——相应能量 //射线的全能峰效率;

P — 相应能量 ≻射线发射几率;

Y → 样品预处理回收率;

估算时因参数 Nm、W、f、 E、Y等值在很大范围内可有多种组合满足式 (4),应根据测量的 目 的要求、现有条件和花费成本最低等原则,实行优化组合来确定采样量的多少。

对一台测量装置固定的 〉 能谱仪,可根据相对测量误差的要求,对(Nm)值和特性指数(f、 ε 、P、Y、T)做出一些估计和假设,然后按 A b-W 关系曲线确定 W 值。当样品可能出现多种核素时,应以估计的 W 值中最大者为采样量。

A b 值可根据现有的资料分析估计,或通过粗略预测来估计。当监测的目的是判断和记录核素浓度 是否超过限值 1/10或 1/4以上浓度时,A b 值可用相应 1/10或 1/4限值浓度来代替。

6.3 鲜样制备法

将采集的样品去掉不可食部分,如蔬菜水果类,有的要去泥土、根须,有的要去籽,剥去外皮,有的应 用清水洗净、控水或用吸水纸拭干。水生物,如虾蟹、贝壳等用水浸泡一夜,使其吐出泥沙,去外壳,取其 软体部分;动物和鱼类样品应分别取其肌肉和内脏等。然后称鲜重并视不同情况,将其切碎、剪碎、搅成 肉末状或压碎后装入样品盒中繳实、压紧,制备成合适的样品用于 //谱分析。

6.4 干样制备法

将不能直接测量的鲜样适当弄碎,进行冷冻干燥或放入清洁搪瓷盘内置于烘箱干燥。采用烘箱干燥时徐徐加温至 105 ℃,烘十几至数十小时至干,然后称重并求出干鲜比。对含核素碘的样品,烘干温度最好低于 80 ℃,防止碘升华损失。干燥后的样品粉碎或研磨后再装样测量,有的样品可压缩成一定形状后再转入测量样品盒中进行测量。

6.5 灰样制备法

核素活度浓度较低的样品,需要进一步灰化浓缩才能测量的样品,可采用干式灰化、湿式灰化或低 温灰化。大量样品主要靠干式灰化。灰化时应严格控制温度,开始炭化阶段应慢慢升温,防止着火,各 种物质着火的临界温度范围参见表 E.3,对脂肪多的样品可加盖并留有适当缝隙或皂化后炭化。炭化 完成后可较快地将温度升至 450 ℃,并在该温度下灰化十至数十小时,使样品成为含碳量最少的灰。严 格防止高温炉内温度过高,造成样品损失或烧结。对灰化时容易挥发的核素,如钝、碘和钉等,应视其理 化性质确定其具体灰化温度或灰化前加入适当化学试剂,或改用其他预处理方法。待处理的样品中如 需分析放射性钝时,灰化温度不宜超过 400 ℃。对要分析碘的样品,灰化前应用 0.5 mol/L NaCH 溶液 浸泡样品十几个小时。 牛奶样品在蒸发浓缩或灰化前也应加适量的 NaOH 溶液。 灰化好的样品在干燥器内冷却后称重,并计算灰样比,然后按需要量制备测量样品。

6.6 特殊生物样品

对于某些生物样品,如机体组织或器官、尿样、便样、呼出气等样品,可能受到采样量限制,核素在机体内分布也不一样,因此应根据具体情况、特点和条件决定其采样和处理方法,以及具体的测量分析方式。

6.7 装样

根据样品放射性核素含量高低,样品量(质量或体积)多少,最低探测限要求、谱仪类型和其系统的 主要性能指标,以及现有条件,选择最合适的样品盒装样。装样应满足以下原则要求:

- a) 选择与刻度源规格、材质一致、未被放射性污染的样品盒。
- b) 对可能引起放射性核素壁吸附的样品(如液体或呈流汁状态样品),应选择壁吸附小或经一定 壁吸附预处理的样品盒装样。
- c) 装样密度尽可能均匀,并尽量保证与效率刻度源的质量密度和体积一样。在达不到质量密度 一致条件时,应保证样品均匀和体积一致。当体积也不能达到一致时,则保证样品均匀条件下 准确记录装样体积和重量,以便对结果做体积和密度修正。
- d) 对含有易挥发核素或伴有放射性气体生成的样品,以及需要使母子体核素达到平衡后再测量 的样品,在装样后应密封。
- e) 对样品量充足,预测核素含量很低,装样密度又小于标准源的样品(通常可能是一些直接分析的样品),可以选用特殊的工具和手段(如压样机),把样品尽可能压缩到样品盒中。
- f) 装样体积和样品重量应尽量精确,前者偏差应控制在 5%以内,后者应小于 1%。
- 6.8 γ谱获取

获取样品γ谱时,应注意以下几点:

- a) 应采用与获取刻度源γ谱相同的几何条件和工作状态下测量样品γ谱;
- b) 测量时间视样品中放射性强弱和对特征峰面积统计精确性要求而定;
- c) 低活度样品的长期测量中应注意和控制谱仪的工作状态变化对样品谱的可能影响,测量过程 中可暂停获取谱数据(或作为一个单独谱存储一次并分析处理),待重新放置样品一次后再接 着测量;
- d) 特别对于天然核素活度低的样品分析时,应在测量样品之前或之后(或者前后两次)测量本底 谱,用于谱数据分析时扣除本底谱的贡献。
- 7 样品γ谱分析

7.1 定性分析--核素鉴别

7.1.1 寻峰并确定峰位。

7.1.2 根据确定的峰位,用能量刻度的系数或曲线内插值求出相应的γ能量。

7.1.3 根据所确定的γ能量查找能量-核素数据表 (库),即可得知样品中存在的核素。但有时需要根据 样品核素半衰期 (具体可测量峰面积的衰变曲线),一种核素的多个γ特征峰及其发射几率比例,或核 素的低能特征 X射线等辅助方法加以鉴别。 生物样品γ能谱分析方法中存在的可能干扰核素及γ射 线参见附录 F。

7.2 定量分析一核素活度浓度确定

7.2.1 根据鉴别的核素的特征,原则上尽量选择γ射线发射几率大,受其他因素干扰小的一个或多个γ 射线全能峰作为分析核素的特征峰。 样品谱十分复杂,并伴有短半衰期核素而难以选定时,可利用不同 时间获取的γ谱做适当处理。

7.2.2 根据样品谱特征峰的强弱和具体条件选择合适的方法计算特征峰面积。

7.2.3 受干扰小的孤立单峰,可选用简单谱数据处理方法,如总峰面积法,也可以用曲线函数拟合 方法。

当分析重峰或受干扰严重的峰时,可采用以下两种方法:

- a) 使用具有重峰分解能力的曲线拟合程序。步骤包括:选取适当本底函数和峰形函数;将谱分段,确定进行拟合的谱段;进行非线性最小二乘法拟合,求出拟合曲线的最佳参数向量;对拟合的最佳峰形函数积分或直接由有关参数计算峰面积和相关量。
- b) 在重峰的情况下,运用适当的剥谱技术或通过总峰面积的衰变处理或其他峰面积修正方法达 到分解重峰或消除干扰影响的目的。
- 7.2.4 采用刻度效率曲线法刻度的谱仪时,按式(5)计算采样时刻样品中核素活度浓度 A:

式中:

- A ────采样时刻样品中核素活度浓度,单位为贝可每千克(Bq/kg)或贝可每升(Bq/L); Ns ── 全能峰净面积计数;
- F1 一短寿命核素在测量期间的衰变修正因子,采用式(6)计算。如果被分析的核素半衰期与样品测量的时间相比大于 100, F1 可取为 1;
- F3 (7) 你合相加修正系数,对发射单能γ射线核素,或估计被分析γ射线的相应修正系数不大时,可取 F3 为 1,否则应设法估算 F3 ,F3 的计算参见附录 D;
- F2 样品相对于刻度源γ 自吸收修正系数,如果样品密度和刻度源的密度相同或相近, F2 可 取 1,F2 的计算参见附录 C;
- ε 相应能量γ射线的全能峰效率;
- **Ρ** 相应能量γ射线发射几率;
- ——测量样品的质量(当测量样品不是采集的样品直接装样测量时, m 用相应于采集时的样品
 质量或体积代替,若进行干燥或灰化处理,应计算干湿比或灰鲜比),单位为贝可每千克
 (Bq/kq)或贝可每升(Bq/L);

★ → 放射性核素衰变常数,单位为每秒(s⁻¹);

△*t* ──核素衰变时间,即从采样时刻到样品测量时刻之间的时间间隔,单位为秒(s)。

式中:

- F1 短寿命核素在测量期间的衰变修正因子,采用式(6) 计算。如果被分析的核素半衰期与样 品测量的时间相比大于 100,F1 可取为 1;
- **从**→→放射性核素衰变常数,单位为每秒(s⁻¹);
- *T*_C → 为测量样品的真实时间 (不是活时间 *T*),单位为秒(s)。

8 不确定度评定

测量结果不确定度的各分量包括采用 A类评定方法或 B类评定方法求出分量,A类方法指通过多

次测量,由贝塞尔公式计算得出的方法;B类方法是指非 A类的评定方法,例如刻度源所含核素活度的 不确定度,一般直接引用自刻度源证书。各不确定度分量*ui*采用"方和根"法合成得到合成标准不确定 度*u* C,采用式(7)计算:

式中:

uc 一合成标准不确定度;

ui -----各不确定度分量 (ul,ul,....., un),一般包括计数统计不确定度、刻度源的不确定度、效率 拟合的不确定度、样品质量不确定度、几何位置不确定度、γ射线发射几率不确定度等。

扩展不确定度 U 采用式 (8)计算:

式中:

U — 扩展不确定度;

₭ ──包含因子, 一般取 2,相应置信度约为 95%; uc ──合成不确定度。

γ能谱分析中不确定度的主要来源及不确定度评定方法举例参见附录 G。

9 样品分析结果报告

9.1 报告样品分析结果应清晰简明,同时给出适当说明。

9.2 定量分析时,报告样品中大于探测限的每一个测量值时都应当带有其扩展不确定度,并注明扩展 不确定度值的覆盖因子或近似的覆盖概率。结果报告应对仪器测量结果的不确定度进行评定,测量结 果表述形式可为 A±U(k=2),正负号后的值为扩展不确定度,同时标明单位和参考日期;其中 A 为活 度浓度值,单位为贝可每千克(Bq/kg)或贝可每升(Bq/L)。

9.3 定量分析时,应给出核素的测量结果及其扩展不确定度,并注明扩展不确定度置信度。扩展不确定度一般保留 1 位有效数字,当扩展不确定度首位小于"3",可保留 2 位有效数字;测量结果的有效数字,应根据测量结果的最后一位和不确定度的末位对齐的原则确定。

9.4 在低水平活度测量时,当低于探测下限时应给出探测下限,并适当注明测量条件,如谱仪系统主要性能、测量时间、使用特征峰、测量几何条件等。探测下限的计算参见附录 H。

附录A

(资料性附录)

能量刻度用的单能和多能核素

能量刻度用的单能和多能核素列于表 A.1。

表 A.1	能量刻度用的单能和多能核素

核素	半衰期	/ 射线能量 keV	⋎ 射线发射几率 %
210 _{Pb}	22.3 a	46 •5	4 •25
²⁴¹ Am	432.6 a	59 •54	35 •78
109 _{Cd}	461.4 d	88 •03	3 •626
57 _{Co}	271.80 d	122 •1	85 •51
¹⁴¹ Ce	32.508 d	145 "4	48 •29
⁵¹ G	27.703 d	320 •1	9 •87
137 _{Cs}	30.018 a	661 .66	84 •99
54 _{Mn}	312.13 d	834 .84	99 . 974 6
²² _{Na}	2.602 7 a	1 274.54	99 . 940
⁸⁸ Y	106.626 d	898 •0	93 •90
		1 836.1	99 •32
60 _{Co}	5.271 a	1 173.2	99 •85
	5.271 0	1 332 49	99 . 982 6
152 _{Eu}		121 .8	28 41
	52 _{Eu} 13.522 a	344 •3	26 •59
		964 •1	14.50
		1 112.1	13 <i>A</i> 1

		1 408 .0	20 •85		
⁴⁰ к	125×10° a	1 460 .82	10 •55		
注:表中的数据来源于 GB/T 11713—2015。					

附录B

(资料性附录)

测量低活度样品用的塑料样品盒

B.1 马林杯样品盒

常用样品盒为无色透明圆柱形马林杯,材料为聚丙烯塑料,密度为 0.91 g/cm³~0.96 g/cm³,熔化 温度 220 ℃~275 ℃,使用中温度不能超过 220 ℃。其剖面如图 B.1 所示。

单位为毫米

图 B.1 典型马林杯样品盒剖面图

11

B.2 圆柱形样品盒

常用的两种高、低圆柱形样品盒剖面如图 B.2 和图 B.3 所示, 材料为聚丙烯塑料。

单位为毫米

图 B.2 高圆柱形样品盒剖面图

单位为毫米

图 B.3 低圆柱形样品盒剖面图

附录C

(资料性附录)

样品自吸收修正方法

C.1 样品相对刻度源自吸收系数 F2 的确定方法

C1.1 当分析样品的基质组成和刻度用的 〉源基质组成不一样,造成装样质量密度与刻度源的质量密度差别很大时,它们之间的 〉射线 自吸收差别就不能忽略,对分析结果或峰面积就应进行修正。通常不必求出绝对自吸收修正因子,只要求分析出样品相对于刻度源的 自吸收修正系数即可。根据各自实验室具体条件可选用下列方法之一。

C.12 当样品的 〉 质量减弱系数(μ/ρ)和刻度源的质量减弱系数(μ/ρ)已知时(其中,质量减弱系数的 单位为 cm²/g),则样品相对刻度源自吸收系数 F2 可按式(C.1)计算:

式中:

 (μ/ρ) 1 — 样品的 %质量减弱系数,单位为平方厘米每克(cm²/g);

 (μ/ρ) 0 — 刻度源的 〉 质量减弱系数,单位为平方厘米每克(cm²/g);

m0 刻度源的装填质量,单位为克(g)。

注 1:L是由样品体积或者说刻度源体积V决定的几何量,可以由标准实验室提供或由 C.2.2 给出的方法获得。

当样品的(μ/ρ)1 值不容易得到,所求自吸收修正的) 能量大于 200 keV,装填样品质量密度 (m1/V)与刻度源的差别不大于 0.3 g/cm³时,可按式(C.2)近似代替式(C.1):

式中:

 \overline{V}

<u>F2</u> 一样品相对刻度源自吸收系数;

────被分析 〉/射线通过样品本身的平均有效长度,单位为厘米(cm);
───样品体积,也就是刻度源的体积,单位为立方厘米(cm³);

 (μ/ρ) 0 ——刻度源的 γ 质量减弱系数,单位为平方厘米每克(cm²/g);

m0 ______刻度源的装填质量,单位为克(g)。

C.13 可按图 C.1 所示点源、样品与探测器的几何位置,通过测量发射多 >> 能量的点源(如¹⁵² Eu,或单能 >> 混合源等)峰面积来计算自吸收修正系数。 点源的 >> 射线能量范围应覆盖待分析的 >> 射线能量。 实验要求至少测量两次,一次是在样品盒装满无放射性的样品基质材料上测量,设测量的峰面积为a1; 另一次是在样品盒装满无放射性的刻度源基质材料上测量,设测得的峰面积为 a0,则样品的相对自吸收系数 F2 可按式(C.3)计算:

式中:

<u>F2</u> — 样品相对刻度源自吸收系数;

L ——被分析γ射线通过样品本身的平均有效长度,单位为厘米(cm);

L — 点源γ射线通过样品的最近距离 (如图 C.1 所示),单位为厘米(cm) ;

a1 ——在样品盒装满无放射性的样品基质材料测量的峰面积;

a0 ——在样品盒装满无放射性的刻度源基质材料测量的峰面积。

图 0.1 点源、样品与探测器的几何位置

当选用的点源足够强,样品和刻度源相对较弱,特别是γ射线能量不重合时,C.1.2的实验可直接 在样品与刻度源上来完成。

C.1.4 确定自吸收系数的第三种方法是用待分析的样品基质和刻度源基质物质制作两个放射性活度 相等(实际上相对强度已知即可)、形状大小和待分析样品一样、γ能量范围覆盖待求自吸收的γ能量的 体源。在相同条件下测量两个源,并分别求出对应的峰面积,设为 A1 和 A0,则样品相对于刻度源的 自 吸收系数 F2 可按式(C.4)计算:

$$F_2 = A_1 / A_0$$
(C.4)

式中:

F2一样品相对刻度源自吸收系数;

A1-待分析的样品基质测量所得的对应峰面积;

A0一刻度源基质测量所得的对应峰面积。

求出若干不同能量 E 的 F2 值,做 F2 -E 曲线图,或选用适当函数拟合各实验点,则可求出任意能量 下的 F2 值。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要 下载或阅读全文,请访问: <u>https://d.book118.com/968010001112006113</u>