2023-2024学年浙江省温州市平阳县万全综合高级中学高二(上) 月考化学试卷(第**1**次)

一、单选题:本大题;	共25 小题,共60) 分。		
1. 乙醇与钠的反应体	系中,属于电解质	的是()		
A . 乙醇	B. 钠	C. 乙醇钠	D. 氢气	
2. 下列物质中, 既溶	于强酸又能溶于强	碱且只生成盐和水的是	()	
A. Al	B. Al_2O_3	C. $NaAlO_2$	D. NH_4HCO_3	
3. 下列哪个不可能表达	示化学反应速率单	位的是()		
A. $mol \cdot L^{-1} \cdot h^{-1}$	B. $g \cdot s^{-1}$	C. $L \cdot \min^{-1}$	D. $kJ \cdot mol^{-1}$	
4. 关于化学反应与能量	量的说法正确的是	()		
A. 中和反应是吸热反	应			
B. 根据能量守恒定律	,反应物总能量与	i生成物总能量一定相等	:	
C. 化学键断裂放出能	量			
D. 燃烧反应属于放热	反应			
5. 在测定盐酸与 NaO	H 溶液反应的反应	Z热的实验中, 下列说法	正确的是()	
A. 使用环形玻璃搅拌	棒是为了使溶液淘	是合均匀,反应充分,凋	小实验误差	
B. 为了准确测定反应	混合溶液的温度,	实验中温度计水银球应	与小烧杯底部接触	
C. 用 50mL 的 0.5ma	$bl \cdot L^{-1}NaOH$ 溶液	分别与 50mL 的 $0.5mc$	$l \cdot L^{-1}$ 的盐酸、醋酸溶液反应,则	测得的反应
热数值相同				
D. 在测定该反应热实	验中需要使用的份	(器有天平、量筒、烧木	、滴定管、温度计	
6. 下列可逆反应达到5	平衡后,增大压强	或升高温度,平衡都向	正反应方向移动的是()	
$A. \ 2NO_2(g) \rightleftharpoons N_2O_4(g)$	$g)\triangle H < 0$	B. $H_2(g) + I_2(g)$	$\rightleftharpoons 2HI(g)\triangle H < 0$	
C. $3O_2(g) \rightleftharpoons 2O_3(g) \triangle$	H > 0	D. $C(s) + CO_2(s)$	$g) \rightleftharpoons 2CO(g) \triangle H > 0$	
7. 已知工业上常用石石	灰乳吸收尾气中的	NO 和 NO_2 ,涉及的反	应为:	
$NO + NO_2 + Ca(OH$	$I)_2 = Ca(NO_2)_2 +$	H_2O , $4NO_2 + 2Ca(C$	$(H)_2 = Ca(NO_3)_2 + Ca(NO_2)_2 +$	$2H_2O$ 。下
列措施一定能提高尾气	气中 NO 和 NO_2 去	除率的是()		
A. 加快通入尾气的速	率	B. 用石灰水替代	石灰乳	
C. 适当补充 O_2		D. 升高温度		

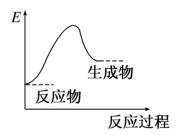
8. $\alpha - Fe(III)$ 晶面铁原子簇是合成氨工业的一种新型高效催化剂, N_2 和 H_2 在其表面首先变为活化分子, 反应机理为:

- $\textcircled{1} H_2(g) \rightleftharpoons 2H(g) \triangle H_1$
- (2) $N_2(g) + 2H(g) \rightleftharpoons 2(NH)(g) \triangle H_2$
- $(3)(NH)(g) + H(g) \rightleftharpoons (NH_2)(g) \triangle H_3$
- $(4)(NH_2)(g) + H(g) \rightleftharpoons NH_3(g) \triangle H_4$

总反应为 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \triangle H$ 。下列说法正确的是()

- A. $\alpha Fe(III)$ 晶面铁原子簇能够有效降低合成氨反应的活化能和焓变
- B. 为提高合成氦反应的平衡转化率,工业上采用适当增大压强和使用高效催化剂等方法
- C. 总反应的 $\triangle H = 3\triangle H_1 + \triangle H_2 + 2\triangle H_3 + 2\triangle H_4$
- D. 反应①和总反应均为放热反应
- 9. 下列变化中, $\triangle S < 0$ 的是()
- A. $2NO_2(g) = N_2O_4(g)$
- B. $3Fe(s) + 4H_2O(g) = Fe_3O_4(s) + 4H_2(g)$
- C. $2IBr(l) = I_2(s) + Br_2(g)$
- D. $(NH_4)_2CO_3(s) = 2NH_3(g) + CO_2(g) + H_2O(g)$

10. 某温度时, $2NO(g) + O_2(g) = 2NO_2(g)$ 反应到 **2s** 后, **NO** 的浓度减少了 $0.06mol \cdot L^{-1}$,则以 O_2 表示该 时段的化学反应速率是()


A. $0.03mol \cdot L^{-1} \cdot s^{-1}$

B. $0.015mol \cdot L^{-1} \cdot s^{-1}$

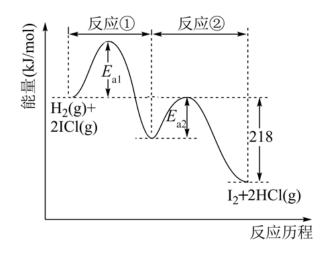
C. $0.12mol \cdot L^{-1} \cdot s^{-1}$

- D. $0.06mol \cdot L^{-1} \cdot s^{-1}$
- 11. 用一种试剂将 NaCl、 $(NH_4)_2SO_4$ 、 Na_2SO_4 三种物质的溶液区分开的是()
- A. NaOH 溶液

- B. $AgNO_3$ 溶液 C. $BaCl_2$ 溶液 D. $Ba(OH)_9$ 溶液
- 12. 下列反应的热效应变化符合如图所示的是()

A. 光合作用

B. 乙醇燃烧

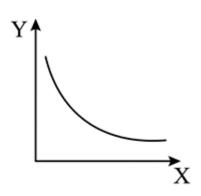

C. 铁粉与稀硫酸反应

- D. NaOH 溶液与盐酸反应
- 13. 下列关于氮及其化合物的说法,正确的是()
- A. 常温下,铝片投入冷的稀硝酸中,产生大量红棕色气体
- B. 合成氨时,使用催化剂可加快反应速率,同时提高原料的利用率
- C. 向溶液中加入 NaOH 溶液,加热,产生的气体不能使红色石蕊试纸变蓝,则原溶液中仍可能含 NH_4^+
- D. 因为溶液中溶有棕黄色的 Fe^{3+} ,所以工业浓硝酸常呈黄色
- **14**. 把 a g 铁铝合金粉末溶于足量盐酸中,加入过量 NaOH 溶液,过滤出沉淀,经洗涤、干燥、灼烧,得到红棕色粉末的质量仍为 a g,则原合金中铁的质量分数为()
- **A.** 70%
- **B.** 52.4%
- C. 47.6%
- **D.** 30%
- 15. H_2 与 ICI 的反应分两步完成,其能量曲线如图所示。

反应①:
$$H_2(g) + 2ICl(g) = HCl(g) + HI(g) + ICl(g)$$

反应②:
$$HCl(g) + HI(g) + ICl(g) = I_2(g) + 2HCl(g)$$

下列有关说法不正确的是()

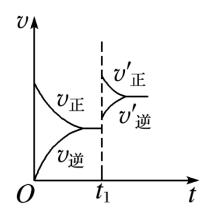


- A. 总反应的活化能为 $(Ea_1 + Ea_2)kJ \cdot mol^{-1}$
- B. 反应①、②均是反应物总能量高于生成物总能量
- C. $H_2(g) + 2ICl(g) = I_2(g) + 2HCl(g)\Delta H = -218kJ \cdot mol^{-1}$
- D. 温度升高,活化分子百分数增大,反应碰撞概率增大,反应速率加快
- **16.** 已知 $H_2(g) + Br_2(g) = 2HBr(g) \triangle H = -102kJ \cdot mol^{-1}$,**1mol HBr** 分子中的化学键断裂时需要吸收 **369kJ** 的能量, $1mol\ Br_2$ 分子中的化学键断裂时需要吸收的能量为 **200kJ**,则 $1mol\ H_2$ 分子中的化学键断

A. 436kl

B. 218kj C. 169kj D. 569kj

17. 一定条件下,固定容积的密闭容器中反应: $2A(g) \rightleftharpoons 2B(g) + C(g) \triangle H > 0$,达到平衡。当改变其中一 个条件 X, Y 随 X 的变化符合图中曲线的是()



- A. 当 X 表示温度时, Y 表示 B 的浓度
- B. 当 X 表示压强时, Y 表示 A 的转化率
- C. 当 X 表示反应时间时, Y 表示混合气体的密度
- D. 当 X 表示 A 的物质的量时, Y 表示 C 的物质的量
- **18.** 在一恒容密闭容器中加入一定量的活性炭和 NO,发生反应: $C(s) + 2NO(g) \Rightarrow N_2(g) + CO_2(g)$ 。

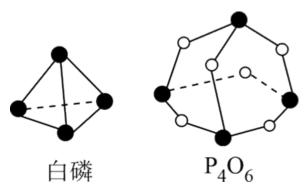
30 min 时改变某个影响因素,测得各物质浓度随时间变化如表所示,下列说法正确的是()

时间/min	0	10	20	30	40	50
$c(NO)/mol \cdot L^{-1}$	1.0	0.58	0.40		0.44	
$c(N_2)/mol \cdot L^{-1}$		х			0.28	
$c(CO_2)/mol \cdot L^{-1}$		х		0.30		0.28

- **A.** 增加活性炭的质量,则 $10 \min$ 时 $c(NO) < 0.58 mol \cdot L^{-1}$
- **B.** $0 \sim 10 \min$ 平均反应速率为 $v(N_2) = 0.042 mol \cdot L^{-1} \cdot min^{-1}$
- C. $30 \min$ 时同时加入等物质的量的 N_2 和 CO_2
- $D. 20 \min \sim 30 \min$,混合气体中 **NO** 的质量分数保持不变
- 19. 对于达到平衡的可逆反应: $X + Y \rightleftharpoons W + Z$, 在 t_1 时刻改变某一条件, 正、逆反应速率的变化如图所 示,下列说法中正确的是()

- A. 可能在 t_1 时刻使用了某种催化剂
- B. 可能在 t_1 时刻减小了生成物的浓度
- C. 若在 t_1 时刻升高温度,则该反应的正反应为放热反应
- **D**. 若在 t_1 时刻增大压强,则 X、Y 均为气体,W、Z 中只有一种为气体
- 20. 只知某反应向正反应方向移动,下列说法不正确的是()
- ①反应物转化率必定增加;②生成物的浓度必定增加;③反应物的浓度必定降低;④生成物的质量必定减少。
- A. 只有①②
- B. 只有①②③
- C. 只有③④
- D. 1234
- **21.** 某温度下,某容积恒定的密闭容器中发生如下可逆反应: $CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g) \triangle H > 0$ 。 当反应达平衡时,测得容器中各物质均为 n mol,欲使 H_2 的平衡浓度增大一倍,在其他条件不变时,下列措施可以采用的是()
- A. 升高温度

- B. 加入催化剂
- C. 再加入 n mol CO 和 $n \mod H_2O$
- D. 再加入 $2n \mod CO_2$ 和 $2n \mod H_2$
- **22.** CO_2 催化加氢制取甲醇、乙醇等低碳醇的研究,对于环境问题和能源问题都具有非常重要的意义。已知一定条件下的如下反应:

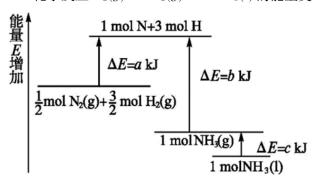

 $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)\triangle H = -49.0kJ \cdot mol^{-1}$

 $2CO_2(g) + 6H_2(g) \rightleftharpoons CH_3CH_2OH(g) + 3H_2O(g)\triangle H = -173.6kJ \cdot mol^{-1}$

下列说法不正确的是()

- A. $CH_3OH(g) + CO_2(g) + 3H_2(g) \rightleftharpoons CH_3CH_2OH(g) + 2H_2O(g)\triangle H < 0$
- B. 增大压强, 有利于反应向生成低碳醇的方向移动, 平衡常数增大

- C. 升高温度,可以加快生成低碳醇的速率,但反应限度降低
- D. 增大氢气浓度可以提高二氧化碳的转化率
- 23. 化学反应可视为旧键断裂和新键形成的过程。化学键的键能是形成(或拆开)1mol化学键时释放(或吸 收)的能量。已知白磷和 P_4O_6 的分子结构如下图所示,现提供以下化学键的键能 $(kJ\cdot mol^{-1})$: P-P: 198, P - O: 360, O = O: 498, 则反应 P_4 (白磷) + $3O_2 = P_4O_6$ 的反应热 $\triangle H$ 为()



- A. $-1638 \, kJ \cdot mol^{-1}$
- B. $+1638 kJ \cdot mol^{-1}$

- C. $-126 \, kJ \cdot mol^{-1}$
- D.

 $+126 \ kJ \cdot mol^{-1}$

24. 化学反应 $N_2(g) + 3H_2(g) = 2NH_3(l)$ 的能量变化如图所示,则该反应的 $\triangle H$ 等于()

- A. $+2(a-b-c) kJ \cdot mol^{-1}$
- B. $+2(b-a) kJ \cdot mol^{-1}$

C. $+(b+c-a) kJ \cdot mol^{-1}$

- **D.** $+(a+b) kJ \cdot mol^{-1}$
- 25. 根据以下 3 个热化学方程式:

$$2H_2S(g) + 3O_2(g) = 2SO_2(g) + 2H_2O(l)\triangle H = -Q_1 \ kJ/mol$$

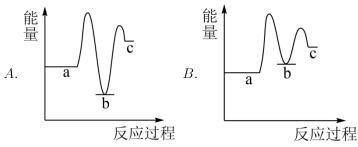
$$2H_2S(g) + O_2(g) = 2S(s) + 2H_2O(l)\triangle H = -Q_2 \ kJ/mol$$

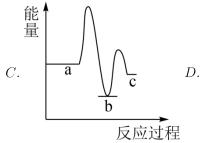
$$2H_2S(g) + O_2(g) = 2S(s) + 2H_2O(g)\Delta H = -Q_3kJ/mol$$

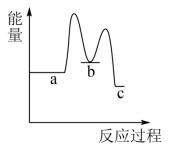
判断 Q_1 、 Q_2 、 Q_3 三者关系正确的是()

- A. $Q_1 > Q_2 > Q_3$ B. $Q_1 > Q_3 > Q_2$ C. $Q_3 > Q_2 > Q_1$ D. $Q_2 > Q_1 > Q_3$

二、简答题: 本大题共 4 小题, 共 40 分。

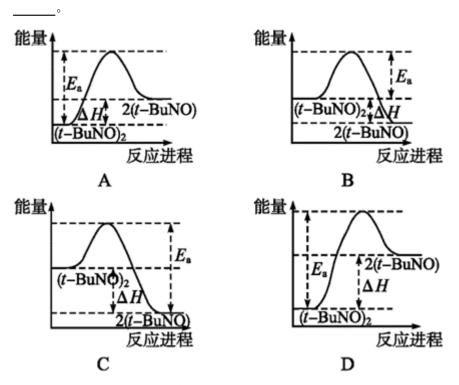

- 26. 按要求写出下列化学方程式或离子方程式。
- (1) 铝与氢氧化钠溶液反应的离子方程式。
- (2)7.80g 乙炔 (C_2H_2) 气体完全燃烧生成二氧化碳和液态水,放出 389.9kJ 的热量,写出反应的热化学方程式 _____。
- **27.** 尿素 $[CO(NH_2)_2]$ 是首个由无机物人工合成的有机物。工业上合成尿素的反应如下: $2NH_3(g) + CO_2(g)$ $\Rightarrow CO(NH_2)_2(l) + H_2O(l)\Delta H < 0$ 。回答下列问题:


已知工业上合成尿素分两步进行,相关反应如下:


反应I: $2NH_3(g) + CO_2(g) \rightleftharpoons NH_2COONH_4(s) \triangle H_1 < 0$

反应川: $NH_2COONH_4(s) \rightleftharpoons CO(NH_2)_2(l) + H_2O(l)\triangle H_2 > 0$

- $(1)\Delta H =$ _____。 (用 $\triangle H_1$ 、 $\triangle H_2$ 表示)
- (2) 下列示意图中 [a 表示 $2NH_3(g) + CO_2(g)$,**b** 表示 $NH_2COONH_4(s)$,**c** 表示 $CO(NH_2)_2(l) + H_2O(l)]$,能正确表示尿素合成过程中能量变化曲线是 。(填编号)



- **28.** 物质 $(t BuNO)_2$ 在正庚烷溶剂中发生如下反应: $(t BuNO)_2$ ⇒ 2(t BuNO).
- (1) 当 $(t BuNO)_2$ 的起始浓度 (c_0) 为 $0.50mol \cdot L^{-1}$ 时,实验测得 20° C 时的平衡转化率 (α) 是 65% 。通过列式并计算 20° C 时上述反应的平衡常数 $K = ___$ 。(保留小数点后一位)
- (2) 一定温度下,随着 $(t-BuNO)_2$ 的起始浓度增大,其平衡转化率 _____ (填"增大"、"不变"或"减

小")。已知 20° C 时该反应在 CCl_4 溶剂中的平衡常数为 1.9 ,若将反应溶剂正庚烷改成 CCl_4 ,并保持 $(t-BuNO)_2$ 起始浓度相同,则它在 CCl_4 溶剂中的平衡转化率 ______(填"大于"、"等于"或"小于")其在正庚烷溶剂中的平衡转化率。

(3) 实验测得该反应的 $\triangle H = +50.5kJ \cdot mol^{-1}$,活化能 $E_a = 90.4kJ \cdot mol^{-1}$ 。下列能量关系图合理的是

(4) 该反应的 $\triangle S$ ______ 0 (填 ">"、"<"或 "=")。在 _____ (填 "较高"或 "较低")温度下有利于该反应自发进行。

- ① $C(s) + 2H_2(g) \rightleftharpoons CH_4(g) \triangle H_1 = -74.85kJ \cdot mol^{-1}$
- $(2) 2CH_4(g) \rightleftharpoons C_2H_4(g) + 2H_2(g) \triangle H_2 = 340.93kJ \cdot mol^{-1}$
- $3 C_2 H_4(g) \rightleftharpoons C_2 H_2(g) + H_2(g) \triangle H_3 = 35.50 kJ \cdot mol^{-1}$

请回答:

- (1) 依据上述反应,则 $C_2H_4(g) + 2C(s) \rightleftharpoons 2C_2H_2(g) \triangle H = kJ \cdot mol^{-1}$ 。
- (2) 在恒温恒压容器中进行反应 $C_2H_4(g) + 2C(s) \rightleftharpoons 2C_2H_2(g)$,下列叙述能够说明该反应达到平衡状态的是(填序号)。
- a. 容器内压强不随时间改变
- b. 容器内固体质量不再改变

- c. 分子中C-H键的数目不再随时间而改变
- d. 混合气体的平均摩尔质量保持不变

答案和解析

1. 【答案】C

【解析】解: A、乙醇不能导电,溶于水不导电属于非电解质,故 A 错误;

- B、钠能导电, 为金属单质, 既不是电解质也不是非电解质, 故 B 错误;
- C、乙醇钠属于盐类,是电解质,故 C 正确;
- D、氢气为非金属单质,既不是电解质也不是非电解质,故 D 错误;

故选: C。

在水溶液里或熔融状态下能导电的化合物是电解质,在水溶液里和熔融状态下都不导电的化合物是非电解质:

电解质一般包括:酸、碱、盐、金属氧化物和水;

非电解质一般包括: 非金属氧化物、大部分有机物、某些氢化物等。

本题考查了能导电的物质、电解质和非电解质的判断,题目难度不大,注意导电的物质不一定是电解质,如金属单质和电解质溶液,电解质不一定导电,如液态氯化氢。

2. 【答案】B

【解析】解: A.Al 既溶于强酸又能溶于强碱,但生成盐和氢气,故 A 错误;

- $B. Al_2O_3$ 既溶于强酸又能溶于强碱,与酸反应生成铝盐和水,与碱反应生成偏铝酸盐和水,故 B 正确;
- C. NaAlO₂ 只能与强酸反应,不能与强碱反应,故 C 错误;
- $D.NH_4HCO_3$ 与强酸反应生成盐、二氧化碳气体和水,与碱反应生成盐、氨气和水,故 D 错误。故选: B。

中学常见的既能与酸反应又能与碱反应的物质主要有:①两性物质: Al_2O_3 、 $Al(OH)_3$ 、氨基酸、蛋白质等;②多元弱酸的酸式盐: $NaHCO_3$ 、KHS、 $KHSO_3$ 、 NaH_2PO_4 等;③弱酸的铵盐及其酸式盐: $(NH_4)_2$ S、 NH_4HS 、 $(NH_4)_2$ CO_3 、 NH_4HCO_3 、 CH_3COONH_4 等;④某些具有两性的金属: Al 等;⑤某些非金属: Si、S 等,还有其他一些特殊物质,再结合是否只生成盐和水判断。

本题考查元素化合物的性质,题目难度不大,旨在考查学生对知识的理解识记与知识归纳,注意基础知识的积累。

3.【答案】D

【解析】解: A. 用单位时间内某物质的物质的量浓度变化表示反应速率时,反应速率的单位可以为 $mol \cdot L^{-1} \cdot h^{-1}$,故 A 不选;

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/97714304206
5006041