关于孟德尔杂交实 验一

一、生命活动离不开细胞

无细胞结构: 病毒,寄生在**活细胞**中

生物

蓝藻、细菌等

菌、衣藻 原生动 少虫、疟 单细胞动

细胞是生物体结构和功能的基本单位。

(一) 病毒的生命活动离不开细胞

病毒小结: 无细胞结构,只有依赖活细胞才能生活。 既不是原核生物、也不是真核生物。

1、病毒作为生物的理由: 能复制产生后代

3、结构 核酸(只有一种, DNA或RNA) 蛋白质

胞的营养物质,合成自身的成分。

- 5、变异类型: 基因突变
- 6、实例4(P4)
- 7、如何培养病毒?

(二) 单细胞生物: 单个细胞就能完成各项生命 活动,如运动、繁殖(无性繁殖)、应激性

原核生物:放线菌、衣原体、 生动物(如草履虫、变形虫、 疟原虫、眼虫等)

注意: 原核生物都是单细胞生物, 但单细胞生 物不一定是原核生物。

(三)多细胞生物:依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动。如缩手反射、膝跳反射、免疫。

如以(细胞代谢)为基础的生物与环境之间物质和能量的交换;以(细胞增殖、分化)为基础的生长发育;以(细胞内基因的传递)为基础的遗传与变异。 和变化

遗传物质的桥梁? 精子和卵细胞

二、生命系统的结构层次(9个)

细胞、组织、器官、系统、个体、种群(3个 关键词)、群落(所有生物)、生态系统(全 部生物+无机环境)、生物圈

注意: 1.多细胞植物没有系统层次。

- 2.单细胞生物的细胞既是细胞层次,又是个体层次。
- 3.细胞是生命活动中能完整体现生命活动的最小层次, 是地球上最基本的生命系统。
- 4、细胞中的元素和化合物、分子和原子、病毒均不属于地球上最早出现的生命形式?

判断:

- 一个农场中的全部家禽
- 一个池塘里的所有鱼
- 一个池塘里的所有生物群落
- 一个蜂巢里的所有蜂 种群
- 一个城市里的所有人 种群
- 菜市场所有的萝卜、白菜
- 一棵枯树及上面生活的所有生物 生态系统

X

一棵枯树上面生活的所有生物群落

三、细胞的多样性与统一性

- 1、细胞的多样性:
- (1) 表现:细胞的形状、大小、结构、功能等
- (2) 直接原因:构成细胞的蛋白质不同
- (3) 根本原因:细胞分化(基因的选择性表达) (同一生物体内)
- 2、真核细胞与原核细胞的区别:

最根本的区别:细胞内有无以核膜为界限的细胞核

大小	较小	较大
细胞核	无,只有拟核,无核 膜、核孔、染色体等	有,有核膜、核孔、染色 体等结构
细胞壁	大多都有细胞壁,成 分为肽聚糖	植物细胞壁成分为纤维素和 果胶,真菌有细胞壁,动物 细胞没有
细胞器	只有核糖体一种细胞器	8种细胞器
DNA存在 形式	拟核中,大型环状裸露 质粒中,小型环状裸露	细胞核中,DNA和蛋白质 形成染色体; 细胞质中,在线粒体、叶绿 体中裸露存在
		第10页,共37页,2024年2月25日,星期天

真核细胞

原核细胞

	原核细胞	真核细胞
增殖方式	二分裂	有丝分裂、减数分裂、无丝 分裂
可遗传变 异类型	基因突变	基因突变、基因重组、
转录与译的	蓝藻细胞内含有叶绿素 (无叶绿体),可进行 是自养需氧型生物。细 数营寄生或腐生生活,是 蓝藻大爆发,可引起水	光合作用, 菌中绝大多 是异养生物。
是否遵循 孟德尔遗 传规律	不懂	遵循
举例	细菌、蓝藻(颤藻、念珠藻、发菜、蓝球藻)、 珠藻、发菜、蓝球藻)、 放线菌、支原体、衣原 体、立克次氏体	动物、植物、真菌 ^{第11页, 共37页, 2024年2月25日, 星期}

带"菌"字的不一定都是原核生物,如酵母菌、霉菌;

带"藻"字的除了4种蓝藻,一般都是真核生物。

- 3、真核细胞与原核细胞的共性(统一性)
 - (1) 都有相似的细胞膜、细胞质、核糖体;
 - (2)都有DNA和RNA
 - (3)遗传物质都是DNA

四、细胞学说的建立过程

- 1、建立者
- 2、内容(3点)
- 3、意义:揭示细胞统一性和生物体结构的统一性,标志着生物学研究进入细胞水平。
- 4、建立过程(P11)

五、显微镜的结构和使用

第14页, 共37页,2024年2月25日,星期天

(一)显微镜的使用方法

- 1、取显微镜: 右手握住镜臂, 左手托住镜座
- 2、对光:对光时左眼注意目镜,转动反光镜。标准:可以看到明亮的视野,视野亮度均匀
- 3、装片的放置:装片应放在载物台的中央,使要观察的部分位于通光孔上
- 4、低倍显微镜的使用
- (1) 先将镜筒下降到最低,用粗准焦螺旋调节
- (2) 眼睛注视目镜,向内转动粗准焦螺旋,缓慢地上升镜筒,直到出现物像。
 - (3) 用细准焦螺旋调节,直到物像最清晰。

5、高倍镜的使用步骤【重点掌握】 (偏哪移哪

- (1) 在低倍镜下找到物像,将物像移至(
-) 视野中央
 - (2) 转动(转换器),换上高倍镜。
- (3)调节(光圈)和(反光镜),使视 野亮度适宜。
 - (4) 转动(细准焦螺旋). 使物像清晰。

颜色浅的材料应用(暗)视野。

(二)显微镜使用常识

1、目镜与物镜

目镜:无螺纹,越长,放大倍数越小;

物镜: 有螺纹, 越长, 放大倍数越大。

2、高倍镜与低倍镜

高倍镜: 距装片近, 视野范围小, 细胞数目少、体积大, 视野暗;

低倍镜: 距装片远, 视野范围大, 细胞数目多、体积小, 视野亮。

3、放大倍数

显微镜的放大倍数=目镜与物镜放大倍数的乘积,指放大的长度或宽度,不是面积。

4、若视野中细胞排成一行,则计算时只考虑长度或宽度;若视野充满多个细胞,计算时应考虑面积的变化。

5、成像特点: 上下、左右倒置
移动时"偏哪移哪"
Ip → d
顺时针 → 顺时针

6、判断污点的位置:

三个可能位置:目镜、物镜、玻片上

方法: 移动, 看污点是否随之移动

除去污点:目镜和物镜只能用擦镜纸擦拭干净。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/995124110102011201